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1 Introduction

This paper provides Bayesian estimates of corporate default probabilities by improving

upon several well-established methods of default prediction. First, while it is common in

the literature to assume that firms that are the same on a few measured dimensions are

identical, I find that accommodating unobserved heterogeneity leads to models of firm

survival that are empirically superior to the standard models. Second, I introduce a hy-

brid approach of default forecasting that enables me to use the best features of two diverse

approaches to modeling: the widely-used structural model, first introduced by Merton

(1974), and the increasingly popular reduced-form approach. The hybrid approach em-

ploys advanced option pricing techniques to improve default forecasting by effectively

relaxing the unrealistic assumptions of the structural model, without compromising too

much on the underlying theoretical structure. Finally, the default estimation methods

introduced here are tested with over 36,000 firm-quarters of data from the U.S. industrial

machinery and instrument sector. These methods are shown to improve forecasting of

corporate default and bankruptcy.

I find evidence that a failure to account for firm heterogeneity in a discrete-time

hazard model leads to significant under-prediction of default probabilities. This result

is well known in other literatures (e.g., Cameron and Heckman (1998)) and has been

discussed in the default setting, with respect to industry heterogeneity, by Chava and

Jarrow (2004). Unobserved heterogeneity across firms could arise for several reasons;

for example, differences in the cost of external financing (Davydenko (2005)), differences

in management structure and quality, and changes in the laws that govern bankruptcy

protection (Davydenko and Franks (2005)). A Markov chain Monte Carlo (MCMC)

sampler is developed to estimate a model with firm heterogeneity. The Bayesian Deviance

Information Criterion (DIC) is then calculated to assess the tradeoff between model fit

and complexity. The DIC favors the model that accounts for firm heterogeneity over

the model that ignores firm heterogeneity in spite of the nontrivial increase in model

complexity. The two competing models are then tested out of sample, and again, the

model accommodating firm heterogeneity is shown to outperform the traditional model.

Several studies of default prediction have included distance-to-default, as derived

from the structural model of Merton (1974), as a time-varying covariate in reduced-form

models (e.g., Duffie and Wang (2004), Bharath and Shumway (2004)). This paper also

combines these two most popular models of default prediction, but in a different, yet
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intuitive, manner. In doing so, criticisms of the Merton model are taken into consider-

ation. Specifically, I show how the output from a reduced-form model can be used to

estimate a random default point for each firm. I then relax the assumption that the

firm’s value follows geometric Brownian motion. I assume that the distribution of firm

value can be approximated by the distribution of the firm’s equity and debt, which is

assumed to follow a mixture-of-normals process. The risk-neutral probability of default

is then derived using the maximum entropy technique described in Stutzer (1996).

Over 36,000 firm-quarters from the intersection of the Compustat and CRSP databases

provided by the Wharton Research Database are used to show that the advances ad-

vocated here have more predictive power than traditional methods. The results and

methods should be appealing to a large variety of practitioners especially given the ex-

pansion of credit derivatives markets and the implementation of the Basel II Accord,

which requires all financial institutions to maintain some level of credit risk monitoring.

1.1 Related Literature

While there have been many variations of the structural model of corporate credit risk

first introduced by Merton (1974), the empirical record of the structural model(s) for

forecasting default and pricing corporate debt has been mixed. The most notable exten-

sions have expanded upon the simplistic capital structure of the Merton model.1 Merton

assumed firms were capitalized with equity and a zero-coupon debt instrument. Geske

(1977) assumed a more complex capital structure and showed that multiple default op-

tions for coupons, sinking funds, junior debt, safety covenants, or other payment obliga-

tions could be treated as compound options; Turnbull (1979) included corporate taxes

and bankruptcy costs; Leland (1994) and Leland and Toft (1996) allowed the default

barrier to be endogenously determined by stockholders. These improvements have made

the Merton model more realistic, yet they have not translated into improved empiri-

cal performance. In testing five structural models of corporate bond pricing, Eom et al.

(2004) found all models to have substantial prediction errors. Using a sample of 182 bond

prices from 1986 to 1997, they found most models predicted yield spreads that were “of-

ten ridiculously small or incredible large.” Nonetheless, the empirical implementation

of the structural model has been championed by Moody’s KMV (MKMV hereafter), a

leading provider of corporate credit risk analysis. MKMV estimates a modified struc-

1See Elizalde (2005) for an exhaustive review.
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tural model called the Vasicek-Kealhofer (VK) model (see Crosbie and Bohn (2001) and

Vasicek (1984)), which uses an empirical distribution of distance-to-default to calcu-

late commercially available Expected Default FrequencyTM(EDF). Recently, Bharath and

Shumway (2004) constructed a simple alternative to the EDF of MKMV and showed that

it outperforms the EDF as a predictor in hazard models and in out-of-sample forecasts.

In light of these empirical shortcomings, many have turned to reduced-form models as

an alternative to the structural approach. Reduced-form models assume an unpredictable

default time driven by a default intensity (see, Jarrow and Turnbull (1995), Jarrow

et al. (1997), Duffie and Singelton (1999), and Hull and White (2001)). Duffie and

Lando (2001) and Jarrow and Protter (2004) showed that the reduced-form approach is

a special case of the structural model in which the value of the firm’s assets are latent

from the econometrician. Unlike the structural approach, reduced-form models assume

an incomplete information set, implying the default time is appropriately modeled as

a default intensity. This default intensity should then depend on any covariate that

may reveal additional information about the firm’s conditional probability of default.

This affords flexibility in empirical implementation, and reduced-form models can be

cast under the broad heading of duration analysis. Shumway (2001) demonstrated the

superior performance of discrete-time hazard models over the traditional econometric

models of Altman (1968) and Ohlson (1980) in estimating corporate default probabilities.

Shumway showed that many of the accounting ratios used in Altman (1968) and Ohlson

(1980) had little predictive power when market variables were included in the duration

model.

More recently, Chava and Jarrow (2004) incorporated industry effects into a reduced-

form model and argued that the likelihood of failure should differ across firms with

otherwise similar financial conditions that operate in different industries. It seems plau-

sible that this argument should extend to the firm level as well. In an empirical study

of over 797 U.S. firms, Davydenko (2005) found that the market value of assets varied

substantially across defaulting firms and concluded that “even if boundary-based models

can be calibrated to predict the average probability of default, they are still likely to lack

accuracy in the cross-section.” He argued that while firm value and liquidity are signifi-

cant predictors of default, their importance was mitigated or amplified by the ability of

the firm to raise outside financing in times of need. Moreover, as recently emphasized by

Hanson et al. (2005) and Pesaran et al. (2005), successful credit portfolio management

depends critically on being able to account for firm-specific heterogeneity. Therefore ac-
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counting for firm heterogeneity, as is done here, may improve upon the existing methods

of credit risk analysis.

While it seems natural to integrate both structural and reduced-form approaches so

as to gain both the economic appeal of the structural approach and the tractability of

the reduced-form model, there have been few attempts to do so. Most recently, Giesecke

(2001) and Giesecke and Goldberg (2004) introduced an approach with a random default

barrier based on incomplete information. The model assumed default is triggered when

an observable firm value, that follows geometric Brownian motion, dropped below a

random default barrier that is unobservable and independent of firm value. Giesecke and

Goldberg (2004) documented the empirical consistency of their approach in predicting

credit spreads relative to the Merton model. The hybrid approach introduced here is

similar to the their model in that the default barrier is assumed to be a random variable,

but my approach allows for a more flexible distribution for firm value.

2 Reduced-Form Model: Firm-Specific Effects

As recently emphasized by Shumway (2001) and Chava and Jarrow (2004), discrete du-

ration analysis is a superior method of predicting corporate default relative to the static

linear discriminant models of Altman (1968) and Zmijewski (1984). While most duration

models are designed for a continuous-time approach (e.g., biomedical studies), economic

data call for a discrete-time approach for two reasons. First, economic data arrive in

weeks, months, or quarters and are therefore discrete by nature. Second, a basic assump-

tion of continuous-time models is that failure times cannot tie. While banned in theory, a

moderate number of tied failure times can be appropriately handled but a large number

of ties, as is the case here, may lead to substantial bias in estimation (Fahrmeir and Tutz

(1994)).

In discrete-time survival analysis, the timescale is partitioned into intervals [a0, a1),

[a1, a2), ..., [am−1, am), [am,∞) where a0 = 0 and am denotes the last observation. For the

subsequent analysis, each interval will be defined as the duration between quarters for

each firm. Identifying the discrete time index t with interval [at−1, at), t ∈ {1, ...m + 1},
a discrete failure time T is considered, where T = t denotes failure within interval t. In

addition to duration T , we also observe a sequence of time-varying covariate vectors for

firm i. Let xit denote the (q × 1) vector of covariates for firm i at time t and let Xit

denote the history of covariates up to quarter t for firm i. The discrete hazard function
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for firm i is defined as the conditional probability

λi(t|Xit) = Pr(T = t| T ≥ t,Xit), (2.1)

for failure in quarter t, given survival up to this quarter. The corresponding discrete

survival function is given by

S(t|Xit) = Pr(T > t|Xit) =
t∏

j=1

[1− λ(j|Xij)], (2.2)

which is the probability of surviving beyond at. The survival information for each firm i

can be summarized by (Ti, δi), which records the observation time Ti and δi, an indicator

of survival taking the value of 1 if the firm defaults, and 0 if the firm exits for reasons

other than default (e.g., merger, acquisition, delisting, etc.).2

By defining the event indicators yit, t = 1, ..., Ti for firm i, where

yit =





0, if t < Ti

δi, if t = Ti,

discrete-time models can be cast into the framework of binary regression models. This is

because the hazard function (2.1) for firm i can be written as a binary response model

λi(t|Xit) = Pr(yit = 1|Xit) = g(ηit) (2.3)

where g(·) is a known cdf linking the probability of default with the predictor ηit, a

function of the covariates. Common choices for discrete survival models of form (2.3)

include the grouped Cox model, probit, and logit model.3 I follow Shumway (2001),

Hillegeist et al. (2004), and Chava and Jarrow (2004) in specifying g(·) as the logistic

distribution. The conventional model is then

Pr(yit = 1|ηit) =
exp(ηit)

1 + exp(ηit)
=

1

1 + exp(−ηit)

2The data set includes several firms that exit for reasons other than default. Duffie and Wang (2004)
model this process as a separate exit intensity.

3These models yield similar results when the intervals are relatively short (Thompson (1977)).
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with linear predictor

ηit = αt + β′xit + bi. (2.4)

The linear predictor consists of fixed effects β1, ..., βq to capture the cross-sectional depen-

dencies in the data for each covariate, a baseline hazard α1, ...αm+1 to capture temporal

dependencies, and random effects b1, ..., bN to account for unobserved individual hetero-

geneity in firms. Several studies have documented how not accounting for unobserved

heterogeneity can lead to substantial bias in classical estimates, and it has been argued

that it is safer to assume the presence of heterogeneity unless it is obvious that none

exists (e.g., Heckman and Singer (1984), Cameron and Heckman (1998)).

Each period prior to Ti, firm i survives and contributes (2.2) to the likelihood; the

firm then contributes (2.1) at default, and therefore firm i’s contribution to the likelihood

is the Ti-fold product,

p(yi1, yi2, ...yiTi
|Xit, β,α, bi) =

Ti∏
t=1

[λ(t|Xit)]
yit [1− λ(t|Xit)]

(1−yit)

=

Ti∏
t=1

{exp(αt + β′xit + bi)}yit

1 + exp(αt + β′xit + bi)
(2.5)

Note that this is the exact likelihood obtained by treating the indicators yit as indepen-

dent Bernoulli trials across discrete time points t with E(yit|X it,α, β) = λ(t|Xit,α,β)

(Allison (1982)). However, by including the random-effects parameters, this model can-

not be estimated with a standard logistic regression model, and more advanced techniques

are required (Biggeri et al. (2001)). I will take a Bayesian approach and estimate the

parameters of the model via Markov chain Monte Carlo (MCMC) sampling.4

2.1 Bayesian Inference for Duration Model

The discrete-duration model is completed with specification of prior distributions for the

free parameters. Combining the likelihood function with the prior distributions on β, bi

for i = 1, ..., N (where N is the total number of firms), αk for k = 1, ..., m + 1 and the

variance components (σ2, υ2) I obtain, by Bayes rule, the joint posterior distribution for

4WinBugs software (Spiegelhalter et al. (2000)) was used to perform the MCMC analysis. WinBugs
is freely available at http://www.mrc-bsu.cam.ac.uk/bugs/.
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the hazard model:

p

(
β, α1, ..., αm+1, b1, ..., bN , σ2, υ2

∣∣∣∣
[
XiTi

, δi, Ti

]N

i=1

)

∝
N∏

i=1

p(yi1, yi2, ...yiTi
|Xit,β, bi)p(β)p(bi|σ2)p(σ2)p(α|υ2)p(υ2)

The five prior distributions are specified as follows: (i) A priori, the fixed effects

parameters β are assumed to be distributed as multivariate normal with zero mean and

covariance matrix ςI, where ς = 104 and I is the (q × q) identity matrix. The large

variance implies the the mass of the distribution is widely dispersed.

(ii) In order to avoid strong structural assumptions about the way the hazard depends

on time, the baseline effects αt are modelled as piecewise constants. Following Gamerman

and West (1987) and Fahrmeir and Knorr-Held (1997), I allow for prior correlation of

these parameters in the form of the random walk process:

αt = αt−1 + εt, t = 1, ..., m

where α0=0, εt ∼ N(0, υ2) and εt is independent αt−s for all s.5

(iii) The random effect terms are assumed to be independent and identically dis-

tributed Gaussian random variables with mean zero and variance σ2. By setting the

mean equal to zero, the random effects are interpreted as deviations from the overall

average.

(iv)– (v) For the variance components, I follow the usual practice of assigning inverted

gamma prior distributions. That is, the prior pdf for σ2 is given by

σ2 ∼ IG(κσ, ωσ)

and the prior for υ2 is of the same form but with shape and scale parameters κυ and

ωυ. The full model is summarized with the likelihood, L, and prior distributions for the

5It is typical for the variance υ2 to depend on the length of the interval, but in this study interval
lengths are all the same.
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parameters:

L =
N∏

i=1

p(yi1, yi2, ...yiTi
|Xit,α,β, bi)

β ∼ N (0, ςIq×q),

bi
iid∼ N (0, σ2) for i = 1, ...N

α0 ∼ N (0, υ2), αt ∼ N(αt−1, υ
2) for t = 1, ..., m + 1

υ2 ∼ IG(κυ, ωυ), σ2 ∼ IG(κσ, ωσ).

Draws from the posterior distribution will be obtained via Gibbs sampling. Appendix

B.1 contains the details of the sampling algorithm, which simulates a Markov chain in

high dimensional space. After testing appropriate convergence diagnostics, draws from

the posterior will be used to estimate default probabilities.

Since variations of (2.4) will be considered, an essential task of the analysis is the

formal comparison of alternative models. One method for comparing models employed

here is the Deviance Information Criterion (DIC) suggested by Spiegelhalter et al. (2001).

DIC is especially useful for model comparison when complex hierarchical models are to

be estimated. This is because Bayes factors, the usual method for carrying out Bayesian

model comparison, are difficult to obtain, while DIC is easily computed given MCMC

output.6 Calculation of the Bayes factor for comparing any two models requires the

marginal likelihoods and thus if the dimension of the parameter space is large, marginal-

ization over each parameter vector can pose a formidable computational challenge. From

a frequentist’s point of view, model assessment is based on deviance, which is defined as

the difference between the log-likelihoods of a fitted model and a “perfectly-fit” model;

that is, a model with as many parameters as data points, yielding a perfect fit. From a

Bayesian point of view, Dempster (1974) suggested the posterior distribution of deviance,

given by

D(θ) = −2 ln L(y|θ) + 2 ln g(y),

as a measure of model assessment. This combines the likelihood, L(y|θ), with a fully

specified standardizing term, g(y), that is a function only of the data. DIC is based on

6In fact, one of the motivating examples used in Spiegelhalter et al. (2001) is the mixed effects (i.e.,
estimating both random and fixed effects) model of Laird and Ware (1982).
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comparisons of posterior distributions of deviance, and is given by

DIC(θ) = D(θ) + pD (2.6)

pD = D(θ)−D(θ̄) = Eθ|y[D(θ)]−D(Eθ|y[θ]) = Eθ|y[−2 ln L(y| θ)] + 2 ln L(y|θ̄)

where D(θ) is the posterior mean of the deviance (Eθ|y[D]), which summarizes the overall

fit of the model. The better the model fits the data, the larger the values for the likelihood.

Thus D(θ), defined as -2 times the log-likelihood, attains smaller values for increased

model fit. Model complexity is measured by the effective number of parameters pD,

defined as the mean deviance D(θ) minus the deviance of means D(θ̄) = D(Eθ|y[θ]).

The term −2 ln L(y|θ) can be interpreted as the residual information in the data y after

conditioning on θ, and thus is a measure of uncertainty. Therefore, pD can be regarded

as the expected difference of the true over the estimated residual information in data y

conditional on θ, and can be interpreted as a measure of expected reduction in uncertainty

due to estimation. Note that the DIC can be rewritten as D(θ̄) + 2pD, which can be

interpreted as a more traditional measure of fit plus complexity. Spiegelhalter et al.

(2001) give conditions for which the DIC is a generalization of the Akaike information

criterion (AIC), and the DIC’s relationship to the Bayesian (or Schwarz) information

criterion (BIC).

3 Structural Model

The main drawback of the duration model just described is the lack of theoretical un-

derpinning. Duration models do not consider the relationship between default and firm

value in an explicit manner. Moreover, time-of-default is determined by an exogenously

given jump process. In contrast, Merton (1974), using the methodology of Black and

Scholes (1973), demonstrated how equity could be modeled as a call option on the assets

of the firm with a strike price equal to the firm’s liabilities. By assuming a simple capital

structure, Merton was able to calculate the default probability via (now) well-known

derivative pricing equations.

Specifically, assume the firm’s assets are financed by equity issued at time t denoted

by St, and zero-coupon debt issued at t (Dt) with a face value of F and maturity date

J . The market value of the firm at any date t is given by the sum of the market value

of debt and equity. Therefore, the accounting identity Vt = St + Dt, where Vt denotes
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firm value, holds for each period. Under these assumptions, the bondholders are entitled

to a time-J cash flow of min[VJ , F ] and since equity holders are the residual claimants,

the value of equity at time J is given by max[VJ − F, 0]. At any time t < J , the value of

these derivative securities is

St = e−r(J−t)EQ
t

{
max[VJ − F, 0]

}
(3.1)

Dt = e−r(J−t)EQ
t

{
min[VJ , F ]

}
(3.2)

where the expectation is taken with respect to the risk-neutral probability measure and

the risk-free rate r is assumed to be constant over time.

Merton (1974) assumed firm value followed geometric Brownian motion

d ln Vt =

(
µV − σ2

V

2

)
dt + σV dWt

where µV and σV are, respectively, the expected return and volatility rates, and Wt is a

Wiener process. Under this assumption, Black-Scholes derivative pricing equations imply

that (3.1) and (3.2) become

St = VtΦ(dt)− Fer(J−t)Φ(dt − σV

√
J − t) (3.3)

Dt = Fe−r(J−t)

(
Vt

Fe−r(J−t)
Φ(−dt) + Φ(dt − σV

√
J − t)

)

where dt = (ln(Vt/F ) − (r − σ2
V /2)(J − t))/(σV

√
J − t) and Φ(·) is the standard nor-

mal distribution function. Given that the value of the firm’s assets follows a geometric

Brownian motion, the value of the assets at any future date J is given by:

ln(Vt+J) = ln(Vt) + (µV − σ2
V /2)J + σV

√
Jεt+J

εt+J =
W (t + J)−W (t)√

J
, εt+J ∼ N(0, 1)

Vt+J/Vt ∼ LN ((µV − σ2
V /2)J, σ2

V J) (3.4)

where the last line is the well-know result that Vt+J/Vt has a log-normal distribution.
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Therefore the probability of default is

πD
t = Pr

(
ln(Vt)− ln(F ) +

(
µ− σ2

V

2

)
J + σV

√
Jεt+J ≤ 0

)

= Pr

(
− ln(Vt)− ln(F ) + (µV − σ2

V /2)J

σV

√
J

≥ εt+J

)
.

We can then define the distance to default as

DDt =
ln(Vt/F ) + (µV − σ2

V /2)J

σV

√
J

Default occurs when the ratio of firm value to debt (Vt/F ) drops below unity or the log

of the ratio is negative. The distance to default DDt can be interpreted as a z-score,

which gives the number of standard deviations the log of this ratio needs to deviate from

its mean in order for default to occur. In other words, the probability of bankruptcy

depends upon the distance between the current value of the firm’s assets and the face

value of its liabilities, adjusted for the expected growth in asset value relative to asset

volatility. Figure 1 replicates Figure 8 of Crosbie and Bohn (2001), which is the graphical

representation of DDt.

In order to implement this approach empirically, we need reliable estimates of the

mean and volatility of firm value. Of course, the value of the firm is not observable for all

t, but the value of equity St is typically readily available. Notice (3.3) is derived under the

assumption of risk-neutrality, and hence, only the risk-free rate enters into the call option

equation. Therefore, given an initial guess for the volatility of firm value and knowledge of

the strike price F , the nonlinear equation (3.3) can be used to solve for firm value at any

date t. This provides a sample of firm values from which mean and volatility estimates

can be used to approximate DDt. The Moody’s KMV (MKMV) estimation procedure

takes advantage of this observation and is a simple two-step algorithm that is repeated

until convergence.7 To explain this algorithm, I adopt the notation of Duan et al. (2004);

suppose we are able to observe a time series of equity values {S0, Sh, S2h, ..., Snh} where h

is the length of time between two observations (measured in years) and n+1 is the length

of the observed time series. Given an initial arbitrary starting value for asset volatility

7It should be noted that this procedure is not the exact method used by MKMV. In estimating asset
volatility, MKMV incorporates an undisclosed Bayesian model that includes country, industry and size
variables to produce a more accurate predictive estimate of the firm’s asset volatility.
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and an approximate value for F , the MKMV algorithm at iteration m is

1. Given a value for asset volatility (σ̂(m)) and a proxy for the default point F , com-

pute the implied asset value time series {V̂0(σ̂
(m)), V̂h(σ̂

(m)), ..., V̂nh(σ̂
(m))} from

{S0, Sh, ..., Snh} using (3.3).

2. Compute the implied asset returns {R̂(m)
1 , R̂

(m)
2 , ..., R̂

(m)
n } where

R̂i = ln(V̂ih(σ̂
(m))/V̂(i−1)h(σ̂

(m)))

Update the asset drift and volatility parameters

R̄(m) =
1

n

n∑

k=1

R̂
(m)
k

(
σ̂(m+1)

)2

=
1

nh

n∑

k=1

(
R̂

(m)
k − R̄(m)

)2

µ̂(m+1) =
1

h
R̄(m) +

1

2

(
σ̂(m+1)

)2

3. Repeat steps 1 and 2 until the absolute difference between σ̂(m) and σ̂(m+1) is less

than 10−3.

It is typical to achieve convergence within three iterations of the algorithm. In the

analysis below, distance-to-default is computed on a monthly basis using daily equity

data.

3.1 A Hybrid Approach

As noted in Section 1.1, the empirical performance of the structural model has been poor.

Specifically, there are three main criticisms of the implementation of the Merton model

just described. First, the Gaussian distribution (3.4) may not have sufficiently thick tails

to capture swift changes in firm value. Figure 2 plots the empirical distribution of daily

returns of a firm that eventually declared bankruptcy, along with the corresponding nor-

mal density with moments set equal to the sample mean and sample variance. Clearly,
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the assumption of normality is not a good one. Zhang et al. (2005) found superior per-

formance by incorporating stochastic volatility and jumps in a structural model. Second,

implementation of this approach must rely on a particular assumption about the level of

the default boundary F , on which there has been little empirical guidance. Huang and

Huang (2003) assumed that the boundary is 60 percent of the face value of debt; Leland

(2004) used a model-implied level of 73 percent. The industry-standard MKMV model

assumes that default happens if at maturity the value of assets is lower than short-term

debt plus 50% of long-term debt, measured at book values (Crosbie and Bohn (2001)).

Third, using daily equity data to calibrate the model could introduce substantial noise

into the estimation procedure (Duan and Fulop (2005)).

Despite these criticisms, a nice property of the structural model is that it can be

updated as often one wishes. It relies on equity data, which are available at a very high

frequency. This is especially important to practitioners who must update, in many cases,

on a weekly basis. In contrast, due to the dependence on accounting data, the discrete

duration model can only be updated on a quarterly basis. Thus forecasts of default using

the discrete duration model could only be updated quarterly.8

The hybrid model introduced here addresses each of the criticisms of the structural

model, while at the same time, maintaining useful properties of the model. Suppose

after estimating the discrete duration model, the quarter t posterior mean probability of

default for firm i is given by 0.01. Suppose further that one has on hand a time series

that proxies for monthly firm values {V̂j−n, ..., V̂j−1, V̂j}. Then assuming a distribution for

firm value that better fits the data (e.g., a mixture of normals), we can treat the current

default barrier F as a random variable. More specifically, given a predictive density for

Vj+J , we can treat the random default barrier as a value-at-risk problem. That is, we

seek an F such that

Pr(Vj+J ≤ F ) = Pr(ln(Vj+J/Vj) ≤ ln(F/Vj)) = 0.01. (3.5)

By simulating draws from the predictive distribution of Vj+J , we would be able to pin

down the random default barrier F implied by the reduced-form model of Section 2.

Figure 3 gives a graphical representation of the hybrid model. Instead of specifying a

default barrier a priori, the hybrid model takes advantage of the output from the discrete

8Forecasting default with the discrete duration model requires a time-series model for the covariates
xit. This is a subject of ongoing research.
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duration model to solve for an endogenous default barrier.

As mentioned above, the hybrid model addresses each of the criticisms of the struc-

tural model. First, the hybrid model relaxes the assumption that firm value follows a

geometric Brownian motion process. Given a proxy for firm value, one is free to choose

the corresponding distribution of firm value. Second, the hybrid model does not rely on

daily equity data. The proxy for firm value could employ the monthly average of daily

equity data, thus mitigating the presence of market noise. Finally, the hybrid model

specifies an endogenous default barrier implied by the discrete duration model.9 How-

ever, the hybrid model does assume that the probability of default is given by the discrete

duration model. Thus, an important question at this point is; what “new” information

does the hybrid model offer? The usefulness of the hybrid model comes from the ability

to produce risk-neutral default probabilities. These probabilities serve as an upper bound

on the probability of default implied by the discrete duration model. Most importantly,

the hybrid model can be updated at a much higher frequency than the discrete duration

model, and hence these upper bounds are available when practitioners need them. The

next section describes how to obtain risk-neutral default probabilities using the technique

of Stutzer (1996).

3.2 Maximum Entropy, Risk Neutral Probability of Default

Stutzer (1996) introduced a nonparametric approach to derivative pricing that, given a

predictive density for the underlying asset, uses a maximum entropy principle to price

the derivative security. Stutzer’s method forces the empirical predictive density to sat-

isfy a set of moment restrictions not used in constructing the predictive density. This

transformed distribution is as close to the original density in the sense that the Kullback-

Leibler Information Criterion (or relative entropy) is minimized.

Within the context of the structural model, implementing this technique amounts

to using the predictive density of firm value to price the derivative securities Dt and St

correctly. Given that the expectation is taken with respect to the risk-neutral probabil-

ity distribution, one will obtain risk-neutral probabilities of default. As an illustrative

example, suppose one had a sample of N weighted draws of firm value at time J , denoted

by V̂iJ , i = 1, ..., N with weights πi, i = 1, ..., N determined by the predictive density. A

random sample from the predictive density would stipulate πi = 1/N for all i. Robertson

9Recall that this is actually the result of Duffie and Lando (2001) and can be proved formally. That
is, if firm value is unobservable, the structural model “reduces to” the discrete duration model.
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et al. (2005) define “new” information as a theoretically-justified moment restriction that

does not hold given weights πi and draws V̂iJ . For example, we know that in the present

context, Dt and St should equal the expected (in risk-neutral measure) discounted (at

the risk-free rate) present value of the firm at horizon J (see (3.1)). But the discrete

duration model gives the objective predictive density, not the risk-neutral one. Stutzer’s

suggestion is to choose the risk-neutral probabilities as close as possible to the objective

probabilities such that the pricing constraint (3.1) holds. In other words, we know that

the following inequality

e−r(J−t)

N∑
i=1

πi{max[V̂iJ − F, 0]} 6= St (3.6)

holds because the πi’s are not the risk-neutral weights needed to price the derivative

security. Thus, we need to reweight the draws with π∗i for i = 1, ..., N such that (3.6) is

satisfied. Of course, there are an infinite number of ways to reweight the draws; however a

straightforward, axiomatically rationalized and interpretable way to accomplish this task

is to minimize the Kullback-Leibler Information Criterion (KLIC) divergence between

the two probability measures.10 This divergence is given by

K(π : π∗) =
N∑

i=1

π∗i log

(
π∗i
πi

)
. (3.7)

Therefore, the convex minimization problem is to minimize (3.7) subject to

π∗i ≥ 0,
N∑

i=1

π∗i = 1, e−r(J−t)

N∑
i=1

π∗i {max[V̂iJ − F, 0]} = St

Using the Lagrange multiplier method and taking the first-order condition yields

π∗i =
π exp(γV̂iJ)∑N

i=1 πi exp(γV̂iJ)

where γ is the Lagrange multiplier on the moment restriction, which can be computed

10If it were the case that the draws came from a random sample, minimizing the KLIC divergence is
equivalent to maximizing the Shannon entropy.
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as the solution to the well-behaved convex minimization problem

γ = arg min
N∑

i=1

πi exp(γ̃[max[V̂iJ − F, 0]− St]).

Therefore, given a predictive density for firm value, this procedure transforms the actual

default probabilities implied by the discrete duration model into the risk-neutral default

probabilities implied by the moment restriction (3.1).11 As noted by Delianedis and

Geske (1999), risk-neutral probabilities are more accurate and are just as valuable in

pricing corporate debt.

4 Data

The subsequent empirical analysis focuses on publicly-traded firms that are members of

the industrial machinery and instrument sector from 1962 to 2004.12 I use quarterly

accounting data for each individual firm obtained from COMPUSTAT, and daily equity

data from the Center of Research in Security Prices (CRSP); therefore firms must have

complete information on both the Compustat and CRSP databases. Duffie and Wang

(2004) analyze a similar data set and note that focusing on one sector may improve

inference by mitigating some of the “industry effects” documented by Chava and Jarrow

(2004). Moreover, relative to other sectors, defaults in this sector occur more frequently

and are distributed more uniformly across time.13

A firm is defined as bankrupt at the end of the current quarter if that firm files for

Chapter 7 or Chapter 11 bankruptcy protection at any time during the current quarter.14

I also consider a broader definition of default. Firms that are delisted from one of the

major exchanges and declare bankruptcy within a five-year period, receive a D credit

rating from Standard & Poor’s Issuer Credit Rating (ICR), or default on any financial

contract are categorized as being in default at the end of the current quarter.15 This

broader definition is relevant because firms that are delisted from one of the major ex-

11Stutzer (1996) describes this “risk-neutralization” procedure in more detail.
12More accurately, I use compustat’s primary industrial classification numbers (DNUM) between 3500

and 3600.
13For example, consider the banking industry where a majority of the defaults in the last 60 years

occurred in the decade between 1982 and 1992.
14This bankruptcy indicator is given primarily by annual COMPUSTAT data item AFTNT35, which

documents reasons for withdraw from the database.
15Campbell et al. (2005) construct a similar default indicator.
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changes are often in serious financial trouble and typically declare bankruptcy within a

few years.

Since duration analysis specifies time-to-default as the dependent variable, the exact

month of bankruptcy or default is recorded. This is to ensure that market and accounting

variables are observable during the interval in which default occurs. Once a firm is

classified as a default, it does not reenter the sample.16 Compustat and CRSP data

are supplemented with data obtained from SEC filings and the Directory of Obsolete

Securities to identify the exact month of failure.

Following Shumway (2001), I use the firm’s trading age as the dependent variable.

This assumes some degree of homogeneity across firms that are newly listed on one of the

three major exchanges, which is not unrealistic since firms are required to meet a specific

set of requirements prior to listing. Therefore firms that have valid data on COMPUSTAT

and CRSP but began trading prior to 1962 (the first date that COMPUSTAT begins

quarterly coverage of publicly traded firms) are dropped from the sample. If the firm

traded for less than one year, then the observation is also dropped from the sample.

Missing quarterly data are replaced with annual data when available.17

The sample consists of 916 firms, 67 of which filed for bankruptcy and and 153

were classified as defaulting firms. Table 1 lists the number of active firms, bankrupt

and defaulting firms since 1970. Prior to 1970 there were no recorded defaults in this

industry and only 9 out of 1,283 recorded failures for the entire COMPUSTAT database

occurred before 1971 (Duffie and Wang (2004)). Thus, the growth in the number of firms

in the industry over time and the increase in the frequency of default implies that the

subsequent analysis will be influenced largely by firms in the latter half of the time series.

Quarterly accounting data from COMPUSTAT along with monthly and daily equity

daily from CRSP were used to construct explanatory variables at the individual firm

level. This paper follows Campbell et al. (2005) in covariate construction.18 The discrete

duration model was fit with five firm-specific covariates, two accounting variables and

three market variables, and one “extertnal” covariate. For the latter, I follow Duffie

and Wang (2004) and use the percentage change in seasonally-adjusted personal income

16Very little information is lost given that only two firms that defaulted would have reappeared in the
sample.

17By replacing the missing quarterly data with annual data, the number of firms included in the study
increases from 871 to 916. This is mainly because quarterly data prior to 1971 are sparse.

18Several covariates employed in past studies were examined here, including the variables analyzed
by Altman (1968) and Zmijewski(1984). The five covariates selected provided the best out-of-sample
default prediction.
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growth (INC) obtained from the National Economic Accounts of The Bureau of Economic

Analysis as an external covariate to account for temporal dependencies not captured by

the baseline parameter αt. The next section describes the importance of this covariate

in more detail.

The accounting ratios examined here include total liabilities relative to market total

assets (TLMTA), which provides a standard measure of firm leverage. Following Camp-

bell et al. (2005), I also find better explanatory power using market-valued total assets,

defined as firm market equity plus total liabilities, instead of total assets. Net income

to total assets (NITA) provides a measure of profitability. Unlike with TLMTA, I did

not find better predictive power using the market value of total assets when construct-

ing NITA. To the two accounting variables, I add three market variables: the monthly

standard deviation of equity returns (SIGMA), the excess equity return relative to the

return of the S&P 500 (EXRET), and relative size (RSIZE), measured as the log ratio

of a firm’s market capitalization to that of the S&P 500 index. To capture market data

at a monthly frequency, I use a three-month moving average with increasing weights

(1/6, 1/3, 1/2) for time periods t− 2, t− 1 and t, respectively in entering EXRET and

SIGMA into the discrete hazard model for observation period t. The accounting vari-

ables are Winsorized at the 1st and 99st percentiles of their cross-sectional distributions

to mitigate the influence of outliers. The variables TLMTA, NITA, and RSIZE exhibited

substantial non-stationarity for a large majority of the firms in the sample. To induce

stationarity, these covariates were first differenced. Appendix A describes the covariate

construction in more detail.

Table 2 provides summary statistics for the five explanatory variables. As emphasized

by Campbell et al. (2005), it is important to make a few observations regarding the

distributions of the covariates. First, value-weighted statistics would look very different

from those reported in Table 2. The differences between mean and median of most the

variables suggests the distributions are skewed by under-performing firms. Second, the

statistics represent a summary of the cross sectional and time series variation in the

variables. The cross-sectional averages of the statistics have experienced several trends

over the last 3 decades. Third, the statistics reported for the defaulted and bankrupt

firms are only for the quarter in which the firm defaulted or declared bankruptcy. The

preceding quarters had similar statistical properties and therefore one would expect that

these covariates would have some predictive power.
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5 Empirical Analysis

5.1 Duration Analysis

In analyzing the discrete-time duration model, in addition to (2.4) itself, I estimated

three variations:

M1 : α + β′xit, M2 : αt + β′xit, M3 : α + β′xit + bi.

Model M1 examines only fixed-effects and does not allow for temporal dependency in

the baseline (i.e., α does not contain a subscript t), nor does it account for firm-specific

effects. The upside of this model is that it is very easy to estimate. As described in

Shumway (2001), a simple logit program with modified standard errors can be employed

for estimation. The downside is that the simplicity may not adequately capture the

temporal and firm-specific nature of default data.

Model M2 allows for a baseline that changes with firm trading age. Figure 4 shows

the empirical hazard estimate, defined as the number of firms defaulting in period t

divided by the number of firms at risk of default in period t, for the first five years of

trading. Figure 4 would suggest that no clear pattern for a time-varying baseline exists

and thus would add little to default prediction. Moreover, the downside of estimating

a baseline that changes with every quarter of duration is that at the end of the sample

period, there are typically few observations and model fit is very poor. A solution is to

introduce a series of dummy variables for different quarterly intervals (Baker and Rea

(1998), Campolieti (2001)). I use dummy variables to control for a series of 15 intervals;

each year for the first 10 years, years 11-15, 16-20, 21-25, 26-35, and 36-45. As discussed

in Section 2.1, the baseline is estimated with a flexible random walk process. I follow

the usual practice of assigning a noninformative prior to the variance component of the

random walk process; that is, I assume that the precision τν = 1/ν2 is distributed gamma

with scale and shape parameters both set to 0.01. This implies that the precision has an

a priori mean of 1−4 and therefore, the distribution of αt is very diffuse about αt−1.

Models M3 and M4 introduce firm-specific, random effects. These models account

for unobserved heterogeneity, which could arise due to misspecification of the functional

form of the model, and the omission of important but perhaps latent variables from the

conditioning set (e.g., the cost of raising additional capital). One potential downside of

mixed-effects models (i.e., models that include both fixed and random effects) is that
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convergence of the MCMC algorithm is considerably slower than the previous models.

For example, the computational time required for a single draw of the mixed-effects model

is, on average, 65% longer than a single draw from the fixed-effects model. In setting the

prior distribution for the random-effect parameter bi, I assume the precision τσ = 1/σ2

follows a gamma distribution with shape parameter of 3 and scale of 0.65.19 This prior

distribution seems plausible given that the model implies 95% of firms with identical

covariates will have log(odds) of default occurring within the range of 2×1.96/
√

τσ. The

flexibility of the prior distribution allows for roughly one order of magnitude difference

between the odds of default for firms with identical covariates. That is, 95% of firms

are assumed to have log(odds) in a range of width log(10) ≈ 2.3, and therefore (2 ×
1.96/2.3)2 = 2.9 seems reasonable for τσ. The prior also suggests low probability of a

two-fold variation in default odds (log(100) = 4.6, thus τσ = (2 × 1.96/4.6)2 = 0.73). A

gamma distribution with parameters (3, 0.65) has a mean of 3 and 89% probability of

exceeding 0.73.

Each model was run with 42,000 draws from the posterior simulator with the first

2,000 draws discarded. Convergence diagnostics developed by Raftery and Lewis (1992)

and Geweke (1992) suggested convergence of the posterior simulator.20 The remaining

40,000 draws were used for posterior and predictive analysis. All of the coefficients are of

the correct sign and are very similar to maximum likelihood estimates obtained by the

author.

Table 3 reports the posterior mean, standard deviation, 95% credible interval and

DIC for models M1 and M3. The posterior distributions for the parameters in all

the models examined suggest the covariates are important predictors of default. The

lower DIC for model M3 implies the data favor the model with random effects despite

the nontrivial increase in model complexity (a ten-fold increase in PD).21 The prior

specification assumed a one-fold variation in the log(odds) of default, implying a standard

deviation for the random-effect parameter of roughly 0.587. The posterior mean and 95%

19Smith et al. (1995) discuss prior specification for mixed-effects models in more detail.
20Geweke’s separated partial means statistic tests whether the mean from the first 20% of the MCMC

sample and the last 50% are identical. A Z-test of the hypothesis of equality of these two means is
carried out and the corresponding chi-squared marginal significance is calculated. This statistic had a
low value of 0.5287 for the random effects variance σ2.

21Formal comparison of the DIC statistic for each model continues to be a subject of on-going research.
Since the DIC is computed with MCMC output it is subject to Monte Carlo sampling error; however,
there is currently no easy and precise way to calculate standard errors for DIC values. Nonetheless,
given the difference in DIC values across the two models, it would require a rather large standard error
to render the difference insignificant.
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credible interval for the random effect standard deviations are 0.689 (0.374, 0.981); thus

the data suggest that firm-specific effects are also significant predictors of default and

vary considerable across firms.

Figure 5 plots the cross-sectional industry-average default probability implied by the

fixed-effects model and the random-effects model with random-effect parameter bi of

the 90th percentile firm (i.e., the firms were sorted according to the posterior mean

of their respective random-effects parameters and the 90th percentile firm was chosen).

The random-effects parameter more than doubles the estimated default probability of the

industry average. Therefore, if there are many firms with similar covariates (or forecasted

covariates) adding random effects to the model effectively sorts these firms.

Table 4 gives posterior estimates for model M2. The posterior mean baseline (alphat)

varies from a low of -6.456 in trading-year 10 with standard deviation of 0.507, to a high

of -4.225 in trading years 16-20 with standard deviation of 0.602 As shown in Table 3,

both of these estimates are beyond the 95% credible interval (−6.629,−5.643) obtained

from the constant baseline, fixed-effects model M1. Therefore, as a firm trades beyond

year 10, the probability of default increases. This counterintuitive result is probably due

to the lack of data beyond trading year 20, which is reflected in the increased standard

deviation and numerical standard error for the baseline towards the end of the sampling

period. For example, there are only 108 firms that traded longer than 20 years and

of these, 5 defaulted; an empirical hazard rate of 0.047. Moreover, the DIC statistic

clearly favors models that do not include a time-varying baseline, suggesting the increase

in model complexity over the fixed-effects model is not justified. This result suggests

that external covariates that are correlated with the business cycle are a better way

to capture temporal dependencies in the data. Indeed, when model M3 was estimated

without personal income (INC) and the resulting DIC (1693.47) implied a relatively poor

model fit.22

To compare how the different techniques respond to changes in a firm’s economic

environment, I follow Duffie and Wang (2004) and examine the default characteristics of

General Binding Corporation (GBC). GBC is selected because it existed for a majority

of sample period (1973-present), and is a relatively large firm with approximately 4,250

employees and a market capitalization of $188 million at the end of 2004. GBC is based

22Results of model M4 are similar to previous results and are therefore not reported here. The DIC of
1610.72 incorporates the improvement due to adding firm-specific effects (bi), and the added complexity
with no improvement in fit of the varying baseline (αt).
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in Skokie, Illinois and designs, manufactures, and distributes office equipment and related

supplies.

Figure 6 plots the in-sample posterior mean probability of default for GBC from

1972:IV to 2004:IV for model M1. As a reference, the industry-average default probabil-

ity is also plotted over the same time period. NITA began to turn negative for GBC in

late 1999 (quarter 103). The average monthly stock price dropped from a high of $39.27

in late 1998 to a low of $6.67 in 2000. Any of the three models predict a 7-fold increase

in default over the same time period. Figures 7 and 8 plot the posterior mean default

probability for GBC for modelsM2 andM3. As the trading age of GBC increases, model

M2 more than doubles the probability of default over model M1. The random-effects

parameter b for GBC is one of the few centered about zero. Thus, the default probability

suggested by M3 is almost identical to that of M1.

It is interesting to compare these in-sample default estimates obtained from the

reduced-form model with those obtained from the MKMV algorithm. Figure 9 plots

the default probability obtained from the MKMV algorithm using quarterly intervals for

GBC. The MKMV estimate is much more sensitive to changes in the economic environ-

ment. The MKMV estimate changes from near zero (0.002) around the 100th quarter

(1998:IV) to 0.94 in quarter 108 (2000:IV). Such sensitivity may be a useful property

of a default estimator in that small changes in the economic environment are amplified,

but it may also lead to spurious conclusions.23 Obviously, a compromise between the

structural model and reduced-form models might be preferred.

In order to calculate the risk-neutral default probabilities implied by the hybrid model,

I must first specify a proxy for firm value. I use one-half of total liabilities and current

liabilities (linearly interpolated from quarterly to monthly values) and add this to the

monthly average of total market capitalization. This approximation to firm value is

frequently used as an initial condition for the MKMV algorithm (Crosbie and Bohn

(2001)). I assume that the monthly returns for firm value follow a two-state, univariate

Markov mixture of normals (MMN). The Markov structure of the model permits serial

correlation and persistence in higher moments, common characteristics of financial time

series (see Geweke (2005)). The general form of the univariate linear model, given by

yt = B′xt + εt, (5.1)

23This result is discussed in Eom et al. (2004).
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is transformed to the MMN model by specifying that the T × 1 vector of observables,

yt, occupies one of m discrete states, denoted by the latent variable st ∈ 1, ..., m. The

discrete states are assumed to evolve according to a Markov process. Thus, conditional

on st = j, εt ∼ N (µj, h
−1
j ) and the univariate MMN model can be described by

yt|(xt,B, µj, hj, st = j) ∼ N (B′xt + µj, h
−1
i ) j = 1, ..., m

st|st−1 ∼ Markov(P, $1)

where P = [pij] is the one-step transition probability matrix of the chain, i.e., pij =

Pr(st = j|st−1 = i) and $1 is the probability distribution at t = 1. I take a Bayesian

approach to estimating the MMN model. Appendix B.2 describes the Bayesian estimation

procedure and prior specification.

Figure 10 plots the estimated risk-neutral default probabilities of GBC assuming the

random default barrier F is determined by the reduced-form model M1, as described in

Section 3.1. The risk-neutral default probabilities serve as an upper bound on the default

probability implied by model M1. The hybrid model was updated monthly, as opposed

to quarterly, thus allowing the risk-neutral default probabilities to deviate substantially

from the implied default probabilities of M1. The monthly risk-neutral estimates were

then averaged to achieve quarterly estimates. As shown in Figure 10, by “forcing” the

predictive density of firm value to satisfy the moment restriction implied by (3.1), the

hybrid model responds aggressively to changes in GBC’s total market capitalization, and

yet effectively smooths the default probabilities implied by the MKMV algorithm.

5.2 Out-of-Sample Testing

Sobehart et al. (2001) developed several techniques for validating models of credit risk

using out-of-sample testing.24 I briefly describe and conduct two such tests. First, I

estimate models M1−M3 using 6 different subsets of the original data set. Specifically,

I estimate the models using the starting date of 1962 with various stopping dates (1990,

’92, ’94, ’96, ’98, 2000). I then test the models’ out-of-sample ability to sort firms

according to posterior mean probability of default for the next 2 years. For example,

I estimate models M1 −M3 from 1962 to 1990. I then use the actual covariates from

years 1991 and 1992 to sort the firms based upon posterior mean probability of default

24Recently, the Basle Committee on Banking Supervision identified credit model validation as one of
the most challenging issues facing quantitative credit model development.
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implied by the model.

Sobehart et al. (2001) advocated the use of power curves to examine the tradeoff

between Type I and Type II error associated with the one-year ahead and two-year ahead

forecast.25 Type I and Type II errors are the errors of misclassifying a bankrupt firm as

healthy and misclassifying a healthy firm as bankrupt, respectively. Statistically, power

curves represent the cumulative probability distribution of default events for different

default probabilities. To plot power curves, companies are first ordered by model score,

from riskiest to safest. For a given fraction of the total number of companies, x%, a

power curve is constructed by calculating the percentage f(x) of the defaulters whose

risk score is equal to or lower than the one for fraction x. Figure 11 shows an example

of a power curve. The curved line shows the performance of the model being evaluated.

The horizontal axis (% of population excluded) depicts the probability of misclassifying

a healthy firm as bankrupt (Type II error), while the vertical axis gives the probability

of correctly classifying a bankrupt firm as bankrupt (1 - Type I error). Thus, a perfect

model would be able to discriminate perfectly, catching all defaulting firms at the lowest

model output. A model that randomly assigned default probabilities would follow the

diagonal line indicated in Figure 11.

Sobehart et al. (2001) also advocated calculating the corresponding accuracy ratio

(AR) associated with a given power curve.26 This metric is obtained by comparing the

power curve of a model with that of the perfect model and is defined to be twice the area

between the power curve and the 45-degree line. Obviously, the closer the power curve

is to the perfect power curve, the better the model performs.

Figure 12 gives the power curves for the hybrid model and models M1 and M3 and

Table 5 gives the corresponding accuracy ratios. The power curves indicate that the

hybrid model outperforms models M1 and M3 across the entire population. That is,

the hybrid model sorted and ranked all of the defaulting firms better than did models

M1 and M3. The power curves also show that model M3 slightly outperforms model

M1. The random effects model better identified a handful of firms that were not obvious

defaulters. This was mainly due to the differences in the parameter values across the two

models. More specifically, these firms had more volatile returns, on average, which the

random effects model weighted more heavily. It is also clear from Figure 12 that some

25These curves are also referred to as cumulative accuracy profiles, Lorenz diagrams and receiver-
operator curves.

26Accuracy ratios are similar to Gini coefficients.
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defaulting firms are very difficult to predict. Accounting ratios and market variables of

a few defaulting firms did not display the typical characteristics of a defaulting firm.

6 Conclusion

The increasing popularity of credit derivatives and innovative corporate debt products

has placed a premium on accurate forecasting of corporate default probabilities. Default

rate probabilities are a necessary input to credit derivative and corporate debt pricing

models. Therefore understanding and accurately modeling the factors that determine

corporate default will continue to be a subject of future research.

This paper has addressed this need by introducing two new techniques for model-

ing corporate default probabilities. First, I show that accounting for firm-specific effects

is an important factor when modeling corporate default probabilities. The empirical

evidence suggests that failing to account for firm-specific effects leads to a significant

under-prediction of default. Second, I introduce a hybrid model that combines the

reduced-form model and the structural model of Merton. The hybrid model relaxes

the unrealistic assumptions of the Merton model and provides upper-bound probabilities

of default associated with the discrete duration model. I also document that a default

prediction procedure that utilizes these two techniques markedly improves predictions

over existing procedures that do not.

On going and future extensions to this research include: [i] Specifying a time-series

distribution for the covariates of the discrete duration model and forecasting corporate

default probabilities. This would provide a term structure of corporate default, and

one could examine how the level and shape of the term structure of conditional future

failure probabilities depends on a firm’s accounting and market variables. [ii] Specifying a

“private-firm model” that relies solely on accounting data to estimate corporate default.

Many practitioners (e.g., banks) must estimate default probabilities for firms that are not

publicly traded. [iii] Expanding the data set to further test the predictive power of the

hybrid model relative to other model specifications. Estimating the models introduced

here using a broad cross-section of credit default swap data would test how well the

models price corporate credit risk.
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Appendix A: Covariate Construction

The covariates were constructed using data from COMPUSTAT, CRSP and the Bu-

reau of Economic Analysis National Economic Accounts database. COMPUSTAT quar-

terly data item numbers are in parenthesis.

NITAi,t =
NetIncomei,t(Data69)

TotalAssetsi,t(Data44)
− NetIncomei,t−1

TotalAssetsi,t−1

TLMTAi,t =
TotalLiabilitiesi,t(Data54)

TotalLiabilitiesi,t(Data54) + MarketEquityi,t

− TLi,t−1

TLi,t−1 + MEi,t−1

RSIZE = log

(
MarketEquityi,t

S&P500MarketV aluet

)
− log

(
MarketEquityi,t−1

S&P500MarketV aluet−1

)

INCt = log

(
PersonalIncomet

PersonalIncomet−1

)

The monthly average excess return and monthly standard deviation in equity returns

were changed to quarterly frequency using a three-month moving average with declining

weights.

EXRETi,t =
1

2
[log(1 + Ri,t)− log(1 + RS&P500,t)]

+
1

3
[log(1 + Ri,t−1)− log(1 + RS&P500,t−1)] +

1

6
[log(1 + Ri,t−2)− log(1 + RS&P500,t−2)]

SIGMAi,t =
1

2
STD(Ri,t) +

1

3
STD(Ri,t−1) +

1

6
STD(Ri,t−2)
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Appendix B: MCMC Calculations

Appendix B.1: Posterior and Conditional Posterior for the Duration Model

Recall that the joint posterior distribution of the reduced-form model is given by

p

(
β, α, b, σ2, ν2

∣∣∣∣
[
XiTi

, δi, Ti

]N

i=1

)
∝

N∏
i=1

p(yi1, yi2, ...yiTi
|Xit, β, bi)p(β)

× p(bi|σ2)p(σ2)p(α|ν2)p(ν2)

Thus, each of the posterior conditional distributions, at least up to a normalizing con-

stant, may be found by combining the logistic likelihood and the appropriate prior dis-

tribution.

The univariate conditional posterior for a single fixed-effect parameter βr is

p(βr|α, β−r, b,yit,xit, ς) ∝
[

T∏
t=1

N∏
i=1

exp{αt + β′xit + bi}yit

1 + exp{αt + β′xit + bi}

]
× exp[−β2

r/2ς]

This conditional distribution is log-concave in βr and is therefore amenable to the adaptive-

rejection sampling (ARS) technique of Gilks and Wilde (1992).

The joint prior density of the baseline hazards is given by

p(α|ν2) ∝ (ν2)−m/2 exp

{
− 1

2ν2

m∑
t=1

(αt − αt−1)
2

}

and the prior for α0 is drawn from N (0, ν2). The univariate conditional posterior for αt

is given by

p(αt|β, αt−1, ν
2,yit,xit) ∝

[ ∏
i∈Rt

exp{αt + β′xit + bi}yit

1 + exp{αt + β′xit + bi}

]

×
[

exp

{
− (αt − (αt+1 + αt−1)/2)2

2ν2

}]
t = 1, ..., m

where Rt is the set of all firms at risk of defaulting in quarter t. For t=1, αt−1 = αt+1 and

for t = m, αt+1 = αt−1. This conditional distribution is also log-concave and is sampled

using ARS.
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The univariate conditional posterior distribution for the random effect parameter

p(bi|β, α, b−i, σ
2,xit, yit) ∝

[
Ti∏

t=1

exp{αt + β′xit + bi}yit

1 + exp{αt + β′xit + bi}

]
exp

{
− b2

i

2σ2

}

is log-concave and sampled via ARS.

The precision τν = ν−2 of the baseline has the full conditional posterior

p(τν |α) ∝ τ (kν+m/2)−1
ν exp

[
− (ων +

∑ (
αt − αt−1)

2/2
)
τν

]

which is a gamma distribution and can be sampled directly.

The univariate conditional posterior distribution for the precision of the random effects

is given by

p(τσ|b) ∝ (
τσ

)N/2+kσ−1
exp

{
−

(
ωσ +

1

2

N∑
n=1

b2
i

)
τσ

}

which is sampled by slice sampling (Neal (1997)).

Appendix B.2: Bayesian Estimation of MMN Model

I assume that the proxy for firm value follows a univariate Markov mixture of normals

(MMN). The general form of the univariate MMN model is given by

yt|(θ, st = i) ∼ N(µi, h
−1
i ) i = 1, ...,m

P [st = j|st−1 = i, st−u(u > 1)] = pij (i = 1, .., m; j = 1, ..., m)

st|st−1 ∼ Markov(P, π1)

where θ = (µj, hj) and P = {pij} is the one-step transition probability matrix of the

Markov chain. Denote St = (s1, ..., st), St+1 = (st+1, ..., sn), Yt = (y1, ..., yt), and Y t+1 =

(yt+1, ...yn). The joint density p(s1, ..., sn|Yn, θ) can be written as

p(Sn|Yn, θ) = p(sn|Yn, θ) · · · p(st|Yn, S
t+1, θ) · · · p(s1|Yn, S

2, θ)
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By Bayes theorem,

p(st|Yn, S
t+1, θ) ∝ p(st|Yt, θ)p(Yt+1, S

t+1|Yt, st, θ)

∝ p(st|Yt, θ)p(st+1|st, θ)p(Y t+1, St+2|Yt, st, st+1, θ)

∝ p(st|Yt, θ)p(st+1|st, θ)

where the last equation follows due to independence of st and p(Y t+1, St+2|Yt, st, st+1, θ).

To calculate p(st|Yt, θ), assuming p(st−1|Yt−1, θ) is available, the following steps are re-

peated

1. Prediction Step: By the law of total probability,

p(st|Yt−1, θ) =
m∑

k=1

p(st|st−1 = k, θ)p(st−1 = k|Yt−1, θ)

2. Update Step: By Bayes theorem, the mass function of the state given information

up to time t is now

p(st|Yt, θ) ∝ p(st|Yt−1, θ)p(yt|Yt−1, θst)

Prior specification is based on the set of conditionally conjugate priors for the means,

precisions, and transition matrix.

p(µi) ∼ N(µ
i
, h−1

i )

p(hi) ∼ G(αi, βi
)

p(Pi) ∼ D(ci1, ..., cim)

where G denotes the gamma distribution and D denotes the Dirichlet. In estimating

the MMN model, I assumed two states (m = 2) with µi = 0, hi = 106, αi = 2, βi =

3/2,ci1 = 10, and ci2 = 2 (see Geweke (2005) for an interpretation of this prior for the

MMN model).

Given the above priors and the likelihood, the posterior of θ can be expressed as

p(θ|Yt) ∝
m∏

i=1

exp

[−(µi − µ
i
)2

2h−1
i

]
h

αi−1
i exp(−β

i
hi)

m∏
i=1

m∏
j=1

p
cij−1

ij

T∏
t=1

p(yt|Yt−1, θ)

29



Todd B.Walker: Estimating Default

Conditioning on the states {st}, the posterior becomes

p(θ|Yt) ∝
m∏

i=1

exp

[−(µi − µ
i
)2

2h−1
i

]
h

αi−1
i exp(−β

i
hi)

m∏
i=1

m∏
j=1

p
cij−1

ij

m∏
i=1

h
n2/2
i

× exp

[−∑ni

k=1(yi,k − µi)
2

2h−1
i

]

where yi,k=1,..ni
are the observations assigned to state si. The Gibbs sampler is given by

running the following simulations successively:

st ∼ s1, s2, ..., sT |Yt, θ t = 1, ..., T

µi ∼ N

[
hiµi

+ nihiyni

hi + nihi

, (hi + nihi)
−1

]
i = 1, ..., m

hi ∼ G
[
αi + ni/2, β +

∑ni

k=1(yi,k − µi)
2

2

]
i = 1, ..., m.

pi ∼ D(ci1 + ni1 + · · ·+ cim + nim) i = 1, ..., m
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Figure 1: This figure replicates Figure 8 of Crosbie and Bohn (2001). Given some initial value V0, an
assumed process for the predictive density at time J , and an assumed default boundary F , one can
calculate distance to default.
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Figure 2: Empirical Kernel Density (solid) and
Gaussian Density for Bankrupt Firm

Figure 2: This figure plots the empirical kernel density (solid) using an Epanechnikov kernel with 0.3
bandwidth. The normal density is also plotted with mean and variance equal to the sample moments.
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Figure 3: This figure shows that given a default probability implied by the discrete duration model,
finding a corresponding default barrier is a value-at-risk problem.
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Figure 4: This figure plots the empirical hazard function for the first 40 trading quarters. The empirical
hazard function is defined as the number of defaulting firms in quarter t divided by the number of firms
that are at risk of defaulting at time t.

37



Todd B.Walker: Estimating Default

Jan1960 Jan1970 Jan1980 Jan1990 Jan2000 Jan2010
0

0.002

0.004

0.006

0.008

0.01

0.012

Figure 5: Posterior Mean Probability of Default
for Industry Average: M1 (solid) and M3

Years

Figure 5: This figure plots the posterior mean probability of default for the cross-sectional industry
average implied by models M1 (solid) and M3 with bi set equal to the 90th percentile.
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Figure 6: Posterior Mean Probability of Default
GBC (Solid) v. Industry Avg.: 1972:IV to 2004:IV

Quarters
Figure 6: This figure plots the posterior mean probability of default for GBC (solid) and the industry
average implied by M1 for 1972:IV to 2004:IV.
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Figure 7: GBC Posterior Mean Probability of Default

M1 (solid) v. M2

Quarters

Figure 7: This figure plots the posterior mean probability of default for GBC (solid) implied by models
M1 and M2.
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Figure 8: GBC Posterior Mean Probability of Default

M1 (solid) v. M3
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Figure 8: This figure plots the posterior mean probability of default for GBC (solid) implied by models
M1 and M3.
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Figure 9: MKMV Probability of Default for GBC

Quarters

Figure 9: This figure plots the default probabilities implied by the MKMV algorithm for GBC from
1972:IV to 2004:IV. Monthly default estimates were averaged to obtain quarterly estimates.
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Figure 10: Risk-Neutral Probability of Default for GBC
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Figure 10: This figure plots the risk-neutral default probability for GBC implied by the hybrid model.
Total market capitalization, averaged monthly, along with one-half total liabilities plus current liabilities,
interpolated from quarterly to monthly values, was used to proxy for firm value. This proxy was assumed
to follow a Markov mixture of normals process. The posterior mean default probability implied by model
M1 was used to find the random default barrier.
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Figure 11: An example of a power curve with a perfect and random model. The horizontal axis (%
of population excluded) depicts the probability of misclassifying a healthy firm as bankrupt (Type II
error), while the vertical axis gives the probability of correctly classifying a bankrupt firm as bankrupt
(1 - Type I error).
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Figure 12: Power curve of model M1, M3 and the hybrid model.
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Figure 13: Power Curves for MKMV and Hybrid Model

Figure 13: This figure plots the power curves for the MKMV model and the hybrid model.
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Table 1: Number of Bankruptcies and Defaults per Year

This table lists the number of active firms, bankruptcies and defaults for 1970-2004.
There are 916 total firms, 67 total bankruptcies and 153 total defaults.

Year Active Firms Bankruptcies Failures
1970 68 0 0
1971 77 0 0
1972 142 0 0
1973 182 0 0
1974 190 1 1
1975 193 0 0
1976 201 0 0
1977 201 0 0
1978 199 0 0
1979 194 0 0
1980 205 0 1
1981 229 0 1
1982 236 2 2
1983 281 0 2
1984 296 5 12
1985 298 2 8
1986 317 1 4
1987 324 2 6
1988 327 1 6
1989 314 8 10
1990 301 7 10
1991 295 8 12
1992 303 4 9
1993 328 4 6
1994 356 4 8
1995 381 2 3
1996 409 1 6
1997 423 2 5
1998 402 6 17
1999 377 3 5
2000 315 0 5
2001 315 3 9
2002 209 0 2
2003 270 0 2
2004 244 0 0
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Table 2: Summary Statistics of Covariates

This table lists the summary statistics for the winsorized explanatory variables.
The number of observations is total firm-quarters. The second and third panels

give summary statistics for the firm-quarters of default and bankruptcy.

Entire Data (N = 37, 750)

Mean Median Std. Dev Min Max

NITA -0.005 0.012 0.086 -0.471 0.153
TLMTA 0.353 0.309 0.244 0.012 0.993
EXRET -0.000 -0.000 0.005 -0.109 0.1237
RSIZE -10.872 -10.952 1.815 -16.824 -2.582
SIGMA 0.038 0.032 0.027 0.002 0.681

INC 0.016 0.016 0.008 -0.159 0.0466

N = 36, 835

∆NITA -0.000 -0.000 0.162 -0.462 0.471
∆TLMTA 0.001 0.002 0.319 -0.980 0.980
∆RSIZE -0.000 -0.000 0.010 -0.228 0.207

Default Data (N = 153)

Mean Median Std. Dev Min Max

NITA -0.332 -0.157 0.541 -0.471 0.091
∆NITA -0.318 -0.166 0.551 -0.461 0.381
TLMTA 0.574 0.613 0.265 0.012 0.783

∆TLMTA 0.239 0.244 0.328 -0.509 0.905
EXRET -0.008 -0.005 0.014 -0.074 0.030
RSIZE -13.514 -13.529 1.292 -15.952 -9.760

∆RSIZE -0.011 -0.008 0.026 -0.127 0.085
SIGMA 0.093 0.083 0.056 0.011 0.376

Bankruptcy Data (N = 67)

Mean Median Std. Dev Min Max

NITA -0.355 -0.193 0.185 -0.471 0.081
∆NITA -0.347 -0.180 0.572 -0.462 0.240
TLMTA 0.642 0.676 0.0.241 0.017 0.977

∆TLMTA 0.353 0.334 0.244 0.012 0.993
EXRET -0.011 -0.010 0.015 -0.075 0.017
RSIZE -13.383 -13.472 1.356 -15.375 -9.761

∆RSIZE -0.015 -0.009 0.028 -0.127 0.033
SIGMA 0.095 0.077 0.055 0.011 0.284
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Table 3: Posterior Estimates for Fixed and Random Effects

This table reports the posterior mean, standard deviation, 95% credible interval and numerical
standard errors (i.e., the standard error of the Monte Carlo approximation assuming a 4%
autocovariance tapered estimate) in parenthesis for the fixed-effects model (M1) and the

random-effects model (M3).

Default Data

Fixed Effects (M1) Random Effects (M3)

Mean Std Dev 95% CI Mean Std Dev 95% CI

∆RSIZE -9.204 9.086 (-25.791, 9.782) -10.219 9.299 (-27.430, 8.669)
(0.009) (0.010)

SIGMA 10.891 1.208 (8.478, 13.264) 13.841 1.889 (10.361, 17.783)
(0.015) (0.028)

EXRET -64.890 14.023 (-93.084, -38.372) -61.808 14.311 (-90.721, -34.389)
(0.095) (0.118)

∆NITA -2.543 0.245 (-3.025, -2.056) -2.753 0.296 (-3.344, -2.183)
(0.002) (0.011)

∆TLMTA 1.714 0.271 (1.216, 2.275) 1.770 0.284 (1.215, 2.329)
(0.002) (0.003)

INC -9.858 12.006 (-33.251, 13.592) -7.191 12.250 (-31.171, 16.539)
(0.027) (0.098)

Constant -6.128 0.251 (-6.629, -5.645) -6.553 0.321 (-7.225, -5.967)
(0.006) (0.021)

PD 6.961 64.015
DIC 1611.72 1591.42
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Table 4: Posterior Estimates for Fixed Effects

This table reports the posterior mean, standard deviation, 95% credible interval and numerical
standard errors (i.e., the standard error of the Monte Carlo approximation assuming a 4%

autocovariance tapered estimate) in parenthesis for the fixed-effects model (M2).

Fixed Effects (M2)

Mean Std Dev 95% CI NSE
∆RSIZE -8.752 9.222 (-24.900, 9.546) 0.010
SIGMA 10.661 1.264 (8.270, 13.020) 0.017
EXRET -68.450 14.628 (-96.565, -41.170) 0.108
∆NITA -2.630 0.256 (-3.115, -2.155) 0.002

∆TLMTA 1.700 0.270 (1.191, 2.209) 0.003
∆INC -16.578 11.983 (-38.725, 5.774) 0.075
α1(1) -6.138 0.357 (-6.858, -5.458) 0.006
α2(2) -6.177 0.345 (-6.875, -5.552) 0.006
α3(3) -6.334 0.374 (-7.095, -5.623) 0.006
α4(4) -5.796 0.341 (-6.486, -5.148) 0.006
α5(5) -5.582 0.350 (-6.584, -5.218) 0.007
α6(6) -6.301 0.402 (-7.119, -5.543) 0.007
α7(7) -6.277 0.411 (-7.111, -5.509) 0.007
α8(8) -6.201 0.418 (-7.054, -5.433) 0.006
α9(9) -6.283 0.448 (-7.211, -5.454) 0.006

α10(10) -6.456 0.507 (-7.507, -5.521) 0.008
α11(11 − 15) -5.663 0.305 (-6.282, -5.074) 0.007
α12(16 − 20) -4.225 0.602 (-5.499, -3.133) 0.007
α13(21 − 25) -4.635 1.874 (-8.653, -1.299) 0.013
α14(26 − 35) -4.624 2.786 (-10.391, 0.685) 0.019
α15(36 − 45) -4.649 3.480 (-11.805, 2.096) 0.027

PD 17.29
DIC 1615.38

Table 5: Accuracy Ratios for Models M1, M3, MKMV and Hybrid Models

Model AR
M1 0.77
M2 0.80

MKMV 0.73
Hybrid 0.83
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