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Abstract

In recent years financial engineers have created instruments that facilitate the efficient

transfer of the risk associated with certain forms of entertainment revenues. This

paper focuses on one particular instrument, options on streams of movie revenues.

These options enable film distributors to manage the risk of a movie, and they offer

diversification opportunities for investors. Pricing the options is complicated by the

fact that cumulative revenue is zero when the options are first offered, uncertainty is

high at the start and quickly diminishes, and the underlying is non-decreasing. We

propose a continuous time Gamma process to capture the underlying revenue stream

and derive the option price formula. To estimate the parameters of the process before

revenue observations are available, we propose a regression method using revenue data

from a data base of earlier movies. With the arrival of the revenue observations, we

update the initial estimates in a Bayesian framework. The fit of the revenue process

and the option price formula to movie data as well as sensitivities of the option price

with respect to the parameters are explored. We apply our method to a set of example

movies.
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1 Introduction

Over the last twenty years, financial engineers have created an impressive ar-

ray of instruments designed to manage the risk of uncertain market values and

cash flows. In this paper, we examine one particular instrument created for the

purpose of managing the risk associated with the revenues generated by enter-

tainers. These revenues can be in the form of a movie, a package of movies,

a CD, or a tour. Our interest is in the valuation of options on a stream of

such revenues. These instruments have several interesting and complex char-

acteristics that pose challenging problems for the derivation of a model and its

application.

For example, the investor who is exposed to the risk of the underlying rev-

enue stream would typically sell a call option before any revenue is generated.

Consequently, there is no observable underlying at the start of the option’s life.

The underlying revenue stream is, therefore, somewhat like an initial public of-

fering. An IPO, however, will eventually start trading and produce observable

prices, whereas the revenue stream will not trade unless securitized and offered

in a public market.

A second complicating factor is that the underlying revenue stream is non-

decreasing. Although revenue can theoretically remain constant over a time

period, it would typically increase. This characteristic is most unusual compared

to underlyings of options on more traditional instruments such as securities,

currencies, and commodities, which can increase or decrease in value. Diffusion

models are, therefore, inappropriate for valuing options on revenue streams.

When the revenue stream is a movie, another interesting characteristic is

that the uncertainty resolves rapidly in the first few weeks after release. Models

for the valuation of options on movie revenues must, therefore, accommodate

the intense concentration of uncertainty at the start of the option’s life.

2



In this paper, we will focus on options on movie revenues. Movies are a

highly visible institution in contemporary society and are of considerable cul-

tural and economic interest. Moreover, there is a large body of statistical infor-

mation available on movies that will enable us to operationalize the model. The

practitioner literature has suggested that there is considerable interest among

distributors in such instruments, and they would seem attractive for hedge funds

and other investors seeking exposure to areas unrelated to mainstream market

sectors.

Because these options are different in so many ways, we will examine the

underlying boundary conditions of European and American call and put options

to determine minimum values, put-call parity, and early exercise conditions. We

will then develop a stochastic process for the revenue stream and use it to de-

rive an option pricing model. As we will show, this model, while resembling

a conventional option pricing model, nonetheless requires information not di-

rectly observable. Thus, the second part of the paper focuses on developing and

applying the econometrics necessary to extract estimates of model parameters

from data on movie revenues. We show how to estimate these parameters before

the movie is released and how Bayesian analysis can be used to update these

estimates as revenues accrue. With these estimates, we are able to examine the

characteristics of the model and illustrate how to apply it to actual movies.

The paper is organized as follows. Section 2 provides background informa-

tion on options on movie revenues. Section 3 examines boundary conditions

for options on movie revenues. Section 4 introduces a deterministic model of

adoption that forms the basis for the stochastic model developed in Section 5.

Section 5 develops option pricing formulae and Section 6 addresses parameter

estimation. In Section 7, we price options on our example movie and explore

their characteristics as well as the fit of our model numerically. Section 8 con-
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cludes.

2 Options on Movie Revenue

A movie is an excellent example of a capital investment decision. A studio

commits a significant amount of initial funding, acquires the resources (including

contracts with the actors, director, and other personnel), produces the movie,

and then expends additional resources in promotion and distribution while the

movie generates cash flows. The cash flows from box office receipts have an

exceptionally short life. For example, one of the most successful movies of

all time, Titanic, lasted in theaters nine months. In contrast one of the least

successful, Gigli, lasted only about two weeks. More common time horizons are

between 10 and 20 weeks.

Most often, movies have an exponentially declining revenue process. Only

in rarer cases, so-called platform releases where the number of initial screens is

small, the revenue process has a hump shape (Sawhney and Eliashberg, 1996).

Figure 1 shows weekly U.S. box office revenues (bars) and cumulative revenue

(lines) for four example movies. The Lord of the Rings: The Fellowship of the

Rings and Ocean’s 11 are two of the most successful movies released in 2001

and examples for highly advertised wide releases. They had marketing budgets

of $40 million and $30 million and were shown on 3,359 and 3,075 initial screens,

respectively. The run time in theaters was 36 weeks and 21 weeks. The graph

shows only the first 20 and 15 weeks, respectively, since these weeks show by

far the largest part of the dynamics. Afterwards, the movies had reached a

saturation point. In both cases, the number of theaters decreased after the

opening weekend. On the other hand, Gosford Park, also released in 2001 and

directed by Robert Altman, is an example for a platform release. It had a low

budget, $18 million in total and was initially released on 9 screens. Over the
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following weeks, the distributor USA Films increased the number of screens to

131, 518, 658. . . , with a maximum of 918 in the 11th week. The movie lasted

23 weeks in theaters. The Others falls in between: Released on 1,678 screens,

it reached a maximum of 2,843 theaters in week 6 and was shown for 14 weeks.

Figure 1 illustrates that these characteristics have a direct influence on the shape

of the revenue process. Wide releases have exponential dynamics in the weekly

revenues and approach their maximum adoption faster than platform releases,

which reach a maximum in weekly revenues during the first few weeks and then

decline slowly.

FIGURE 1 ABOUT HERE.

Of course, most movies also have a second life, generating cash flows through

video rentals, video sales, and television rights. These amounts can be substan-

tial. For example, Titanic was released on video in 1999 and has since generated

another $300 million from domestic rentals. A third major source of revenue

from a movie is box office receipts, video sales, and rentals in non U.S. countries.

Titanic, for example, has generated about twice as much in box office revenue

and almost three times as much in video rentals outside the U.S. as inside the

U.S. Foreign cash flows can occur almost simultaneously with U.S. cash flows.

We do not consider any of these other revenues in our analysis.

As a risky investment, a movie is characterized by a tremendous concentra-

tion of uncertainty during the first few weeks after release. A number of factors

determine success or failure of a movie and the process is extremely complex.

Expensive movies with well-known stars are sometimes dismal failures, while

low-budget movies are sometimes highly successful. 1 Some movies receive ex-
1For example, The Alamo released in 2004 starring Billy Bob Thornton and Dennis Quaid

cost $95 million and earned about $22 million in box office revenues. At the other extreme,
The Blair Witch Project released in 1999 cost about $35,000 and generated box office receipts
of over $140 million.
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cellent critical reviews and awards but are commercially disappointing.2 It is

common to observe movies that do well in spite of poor critic reviews. Movies

that are commercial failures in the U. S. are oftentimes highly successful in for-

eign markets.3 Because of the high degree of uncertainty and the large financial

investment, movies are prime candidates for the financial engineering of risk

transfer instruments.

One of the first such instruments was a $400 million seven-year Eurobond

released in 1992 by The Walt Disney Company. The interest rate was tied to

the revenues from a combination of 13 Disney movies released in Europe. The

rate was set at 7 for 18 months. Beyond that point, the coupon was set at a

formula directly related to revenues from these movies. The total rate would

end up being between 3% and 13.5%. Obviously the return on this bond takes

on the characteristic of a call option, exercising and paying additional money if

target revenue levels are met.

In 1997, Risk magazine (Conway, 1997) reported on the creation of an Enter-

tainment Industry Options Exchange in London. This exchange was conceived

as an organized marketplace for trading derivatives based on movies and other

entertainment-based revenues. One of the first instruments planned was options

based on the album Perfect World by pop singer Debbie Bonham. There is no

subsequent evidence that this exchange was ever formally operational.

Also in 1997 pop singer David Bowie released $55 million of bonds with

coupons tied to the revenue from some of his albums. These instruments became

known as Bowie Bonds, but they were not successful for investors, however, and

were downgraded to near junk status in 2004.4

2For example, in 1995 Bravehart generated only about $76 million in revenue in the U.S.,
just slightly above its cost of $72 million. The movie received 10 Oscar nominations and won
five, including Best Picture.

3For example, in 2004 the movie Troy, costing $185 million, earned only $133 million in
U.S. box office receipts but has grossed about $350 million outside the U.S., placing it in the
top 50 movies of all time.

4In August, 2005, the Wall Street Journal (Richardson, 2005) noted that instruments
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In 2004 Risk (Patel, 2004) describes the efforts of an American company

called Center-Group to create an electronic market for new derivative instru-

ments based on box office receipts. No further evidence exists of whether this

market has been formally created. The article also references the securitization

of revenues of such movie studios such as Vivendi and Dreamworks SKG. It also

notes, however, that some defaults have occurred in previous securitizations.

Virtual derivatives on movies can be traded on the Hollywood Stock Ex-

change (www.hsx.com), a subsidiary of the American bond trading firm Cantor

Fitzgerald. This exchange was created in 1996, and all trading is based on fic-

tional money. Stocks and options on movies can be purchased and sold. The

exchange also offers “bonds” on actors and actresses in which value is accrued

based on revenues generated by their movies. The exchange creates value by

selling the data to the movie industry, where it could presumably be used to

assess the public’s interest in movies and performers.

While it is not clear that derivatives on revenues from movies, music record-

ings, and tours have been widespread, there would appear to be great potential

for such instruments. Americans spend more than $13 billion a year on movies

and there has been an increasing interest in the accumulation and analysis of

movie revenue data (Lippman, 2005) with no less than five web sites devoted to

this subject. Not only is the entertainment industry in need of risk management

techniques, but claims on these instruments could be particularly attractive to

investors because of diversification potential. Hedge funds and other institu-

tional investors would seem to be an ideal market, but individual investors

might well become interested, as evidenced by the over one million participants

as claimed by the Hollywood Stock Exchange.

Although numerous types of derivatives are potentially viable for entertain-

similar to Bowie bonds are expected to stage a comeback, stimulated by growth in sales of
digital downloads and cellphone ringtones.
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ment based products, our focus will be on options on movie revenue. As briefly

mentioned in the introduction, these options have several unique features that

must be addressed in building pricing models. These features pose interesting

and unusual challenges for pricing these types of claims. An added benefit of

this research is that modeling the revenue stream would be beneficial for con-

structing securitized equity shares. We confine our research to European and

American options. Exotic variations will undoubtedly be quite interesting, but

we leave that subject to future research.

3 Boundary Conditions for Options on Movie

Revenues

We begin by examining the basic pricing results that can be developed without

specifying a stochastic process for movie revenues. We start by defining the

underlying revenue stream as a random value R(s), which represents revenue

accrued over the period 0 to s. Although a discrete-time model could be used

here, we let revenue accrue continuously. Hence,

R(s) =
∫ s

0

dR. (3.1)

initialized at R(0) = 0. The value at time s of the stream received at time T is

specified as

V (s) = e−r(T−s)ER(T ), (3.2)

where r is an appropriate discount rate. At time s, some of the revenue stream

will have been accumulated. That is

R(T ) =
∫ s

0

dR +
∫ T

s

dR. (3.3)
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In that case, the known portion clearly has a present value of R(s)e−r(T−s).

Define the present value of the unknown portion as Ω(s, T ). Thus,

V (s) = R(s)e−r(T−s) + Ω(s, T ). (3.4)

At expiration, a European call worth is worth C(T ) = max{0, R(T ) −K},
while a European put is worth P (T ) = max{0,K − R(T )}. As with standard

European options, lower strikes for calls and higher strikes for puts are more

valuable.

Minimum values can be established by creating combinations of options, the

underlying revenue stream, and risk-free bonds. We assume frictionless trading

in these instruments is possible. For calls, hold the revenue stream, borrow

Ke−r(T−s), and sell the call. The payoffs are R(T ) − K < 0 if R(T ) ≤ K

and 0 otherwise. To prevent arbitrage, a non-positive payoff must guarantee a

non-positive initial value. Hence, the call has the same minimum value as for

standard European calls: max{0, V (s)−Ke−r(T−s)}. For puts, hold the revenue

stream, borrow K, and buy a put. The payoffs are 0 if R(T ) ≤ K and R(T )−
K > 0 otherwise. For a non-negative payoff, we must have a non-negative

current value, which leads to the minimum value of max{0, Ke−r(T−s)−V (s)}.
Put-call parity is similarly established by holding the revenue stream, buying

a put, selling a call, and borrowing K. This position provides a zero payoff

for certain, so its current value must be zero. Put-call parity is, therefore, the

same as for standard options

P (s, T ) + V (s) = C(s, T ) + Ke−r(T−s). (3.5)

American options on revenue have some interesting properties. In-the-

money American calls can be exercised for a current value of R(s)−K. Such
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calls are worth a minimum of V (s)−Ke−r(t−s). No early exercise will occur if

V (s) − Ke−r(T−s) > R(s) − K. Recall that V (s) = R(s)e−r(T−s) + Ω(s, T ).

Thus, we have the condition as

R(s)e−r(T−s) + Ω(s, T )−Ke−r(T−s) > R(s)−K (3.6)

which means that

(R(s)−K)
(
1− e−r(T−s)

)
< Ω(s, T ) (3.7)

This condition means that the present value of the remaining revenue stream

exceeds the interest on the payoff from early exercise. This condition will not

always be met. Hence, early exercise of calls can occur.

Conventional American puts on revenue are trivial instruments. If out-

of-the-money, they can never move in-the-money. If in-the-money, they can

only move less in-the-money or out-of-the-money. Hence they are immediately

exercised if in-the-money and worthless if not. The Bermuda put exercisable

at τ ≤ t ≤ T is straightforward. It will be exercised at τ if in-the-money and

will be dead at τ if out-of-the-money. Its payoff and hence its value is therefore

equal to that of a standard European put maturing at τ.

4 A Deterministic Model for the Adoption of an

Innovation

Modeling the process by which movie revenue has been generated has been the

subject of a number of papers in the economics and marketing literature. The

most recent work includes the models of Sawhney and Eliashberg (1996), Ravid

(1999), Simonoff and Sparrow (2000), Corts (2001), Elberse and Eliashberg
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(2003), Goetzmann, Pons-Sanz, and Ravid (2004), and Filson (2005). Most of

these models focus on forecasting revenue as a function of the characteristics of

the movie and certain time series properties. The predominant structure is to

forecast revenue after the release of the movie using information from the first

few weeks.

For the purpose of pricing options on movie revenue, we require a tractable

and simple model for the evolution of the revenue series. Such a model should

contain a deterministic component plus a volatility factor. Moreover, we must

be able to model revenue before the movie is released.

In this study, we will use the Bass (1969) model as the deterministic baseline

model for the revenue process. Bass assumes that there are two forces influencing

the adoption of an innovation. One force is independent of the previous number

of adopters (innovations) and the other force is positively influenced by the

previous number of adopters (imitations). Consider first an individual adopter.

The probability of an event (adoption) in the interval [t, t + dt], given that the

event has not occurred previously, is called the hazard function, h(t). The Bass

hazard model is

h(t) =
f(t)

1− F (t)
= p + qF (t), (4.1)

where f(t) is the density function of the time of adoption and F (t) is the cu-

mulative density up to time t. The structure of the model is determined by p

and q. The parameter q must be non-negative and p must be positive. Both

parameters must be finite if the density function is to be non-degenerate.

The first force in the adoption process, p, has been called the coefficient of

innovation. It is the decision to adopt independent of the actions of others.

Bass calls the second force, q, the coefficient of imitation. This coefficient is

related to the cumulative probability of adoption up until time t. Lekvall and

Wahlbin (1973) have referred to these coefficients, respectively, as the external

11



and internal influence in the adoption process. The solution of the ordinary

differential equation (4.1) with the initial condition F (0) = 0 is

F (t) =
1− e−(p+q)t

1 + q
pe−(p+q)t

. (4.2)

The density function for the time of adoption is then

f(t) =
dF (t)

dt
=

(p + q)2 pe−(p+q)t

(
p + qe−(p+q)t

)2 , 0 < t < ∞. (4.3)

If the potential population is m, fixed, the total number n(t) of adoptions

up to time t under the deterministic model is n(t) = mF (t) and the rate of

adoptions is mf(t). The same solution can be obtained by defining F (t) =

n(t)/m as the fraction of individuals who have adopted by time t. From (4.1)

the differential equation for n(t) is given by

dn(t)
dt

= (m− n(t))
(

p + q
n(t)
m

)
, (4.4)

n(t) = m

(
1− e−(p+q)t

1 + q
pe−(p+q)t

)
= mF (t). (4.5)

From equation (4.4) it is clear that the rate of adoptions is proportional to the

remaining non-adopters. The coefficient of proportionality is p + qn(t)/m.

5 A Stochastic Revenue Model

The gamma distribution possesses desirable properties for modeling non-de-

creasing revenue since increments are non-negative and, under appropriate choice

of parameters, reproduces under addition. Unlike Geometric Brownian Motion,

zero initial values do not cause problems. Consistent with the traditional inno-

vation literature, we construct a gamma process so that the time varying mean
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is equal to that of the deterministic Bass model. This section describes the

properties of the density function and proposes a Gamma process as a revenue

model. 5

5.1 The Gamma Density

The density function of the gamma variate x is given by

fX(x) =
xα−1e−x/β

βαΓα
, x ≥ 0, α > 0, β > 0, (5.1)

where α and β are parameters. Two useful results for option pricing are

∫ ∞

d

fX(x)dx =
Γα

(
d
β

)

Γα
(5.2)

and
∫ ∞

d

xfX(x)dx =
αβΓα+1

(
d
β

)

Γα+1
=

βΓα+1

(
d
β

)

Γα
, (5.3)

where Γα =
∫∞
0

tα−1e−tdt is the gamma function and Γα(d) =
∫∞

d
tα−1e−tdt

is the “upper” incomplete gamma function. Also note that in terms of the

cumulative gamma distribution, FX(d) = 1− Γα(d/β)/Γα.

The moment generating function of X is

MX(t) = (1− βt)−α
, (5.4)

giving E(X) = αβ and V ar (X) = αβ2. Furthermore, if U =
∑n

i=1 Xi is a sum

of independent gamma random variables with parameters αi and β, then U is
5We will assume that the underlying follows a Gamma process. Many other studies incor-

porate the Gamma process into the volatility term. See for example, Carr et al. (2006), Heston
(1993), Madan, Carr, and Chang (1998), Madan and Milne (1991), Madan and Seneta (1990).
Other applications of the Gamma process in financial modeling can be found in Todorov and
Tauchen (2005) and Shaliastovich and Tauchen (2005). Wenocur (1989) proposes the Gamma
process as a reliability model.
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also gamma distributed with moment generating function

MU (t) = (1− βt)−(Pn
i=1 αi) . (5.5)

5.2 Imbedding the Bass Model in a Gamma Process

To model random deviations from the expected revenue given by the Bass model,

we specify a process whose increments N(t)−N(s), t > s, are gamma distributed

with mean equal to m(F (t)− F (s)) and variance m(F (t)− F (s))β, where β is

the main volatility parameter.6

Consider the probability space (R+,Ft,P) on which there is defined a gamma

process N(t) in continuous time. That is, N(t) has independent increments and

the density of ∆N := N(t + h)−N(t) is given by

f∆N (x) =
xα−1e−x/b

bαΓα
, 0 < x < ∞,

where α = µ2h/ν and b = ν/µ. Then, E(∆N) = µh,Var(∆N) = νh and we can

write symbolically for the limit h → 0:

EdN = µdt,

Var(dN) = νdt.

The density fN (·) gives rise to the probability measure P, given by

P(N(t) ∈ dx) =
xtα−1 e−x/b

bαt Γtα
dx.

The filtration Ft is given by the sigma fields generated by N(t), Ft := σ(N(s), s ∈
6Note that we use the symbol N(t) for the adoption process instead of n(t) used in the

Bass model in Section 4. N(t) captures n(t) in the first moment, EN(t) = n(t), but also
contains a random element. Therefore, N(t) does not satisfy the differential equation (4.4)
but EN(t) does.
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[0, t]). The process N(t) is a special case of a Lévy process (Bertoin, 1996 p 73;

Tsilevich, Vershik, and Yor, 2001). The Lévy measure Π is given by

Π(dx) =
µ2

ν
x−1e−µx/νdx.

To capture the Bass model in the first moment, we define µ and ν such that

for s < t they satisfy

E∆N = µ(t− s) := m(F (t)− F (s)),

Var∆N = ν(t− s) := βm(F (t)− F (s)).

where F (t) is the Bass model given by equation (4.2). Therefore, as s → t,

µdt = mdF (t) and νdt = βmdF (t) so that our model can be expressed as

dN(t) ∼ Γ
(

mdF (t)
β

, β

)
. (5.6)

For arbitrary increments of length t− s

N(t)−N(s) ∼ Γ (α(s, t), β) , (5.7)

where α(s, t) := m(F (t) − F (s))/β. Consistent with the rapid resolution of

uncertainty in movie revenues, the variance likewise diminishes rapidly with

t− s.

6 Option Value

European options are issued by the firm on cumulative revenue and are cash-

settled at expiration. We assume a continuous time CAPM world with con-

stant investment opportunity set and with revenue uncorrelated with the market
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(Merton, 1972).7 Thus, the risk is diversifiable and not priced. Under this

setup, the call option pricing formula at s for an option expiring at T can be

obtained under the physical measure and is

C(s, T ) = ae−r(T−s)E [max{0, N(s) + U(s, T )−K] (6.1)

= ae−r(T−s)

∫ ∞

d

(N(s) + U(s, T )−K) fU (u) du

where U(s, T ) := N(T ) − N(s), a is average ticket price and d = max{0,K −
N(s)}. Because of the properties of the Gamma distribution, call value can be

written

C(s, T )

= ae−r(T−s)


(N(s)−K)

Γα(s,T )( d
β )

Γα(s,T )
+

(m (F (T )− F (s)) Γα(s,T )+1

(
d
β

)

Γα(s,T )+1




= ae−r(T−s)


(N(s)−K)

Γα(s,T )( d
β )

Γα(s,T )
+

βΓα(s,T )+1

(
d
β

)

Γα(s,T )


 . (6.2)

where α(s, T ) = m (F (T )− F (s))/β.

Boundary conditions are satisfied since s = T is sufficient for U(s, T ) = 0 and

equation (6.2) is the mathematical equivalent of equation (6.1). Specifically,

note in the first part of equation (6.2) that C(T, T ) = a (N(T )−K) when the

option is in-the-money. When the option is out-of-the money C(T, T ) = 0 since

lims→T Γα(s,T )( d
β )

/
Γα(s,T ) = Γ0( d

β )/Γ0 =
∫∞

d/β
e−t

t dt
/∫∞

0
e−t

t dt = 0.

Similarly, the value of an European put is given by put-call parity or com-
7Using our data set (Section 7.1), we constructed an index for weekly movie returns during

1998–2000. Comparing this index to the weekly returns from the S&P500, we found no
significant correlation in bivariate Granger-causality tests. The details of the test are available
from the authors upon request.
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puted directly as

P (s, T ) = ae−r(T−s)E [max{0,K −N(s)− u(s, T )] (6.3)

= ae−r(T−s)

∫ d

0

(K −N(s)− u(s, T )) fU (u) du

= ae−r(T−s)

((
1−

Γα(s,T )

(
d
β

)

Γα(s,T )

)
(K −N(s))

+
βΓα(s,T )+1

(
d
β

)

Γα(s,T )
− α(s, T )β

)
.

Irreversibly in-the-money: An option on revenue can be irreversibly in-

the-money, meaning that at a given time during its life, cumulative revenue can

already exceed the exercise price, guaranteeing that the option will expire in the

money. This result occurs when N(s) > K in which case d = 0 so the option

price becomes

C(s, T ) = ae−r(T−s) (N(s) + m (F (T )− F (s))−K) . (6.4)

Note that volatility does not matter if the option is irreversibly in-the-money.

This is a little-known attribute of options, which can also be seen in the binomial

model for standard European options when states can be identified in which

there is zero probability of the option expiring out-of-the money.

Probability of finishing in-the-money: If the option is not irreversibly

in-the-money, it is out-of-the-money. One value of interest is the probability of

the option finishing in-the-money. Since our model prices under the physical

measure, we write

P(N(t) > K) = P(u(s, T ) > K −N(s)) =
Γα(s,T )

(
d
β

)

Γα(s,T )
(6.5)
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If N(s) > K, the option is irreversibly in-the-money and d = 0. Thus, the

probability of finishing in-the-money is one.

Valuing the revenue stream: Since we assume that the revenue stream has

no systematic risk, the value at time s of a cumulative stream to be realized at

time T is

V (s, T ) = ae−r(T−s) (Es (N(s) + u(s, T ))) (6.6)

= ae−r(T−s) (N(s) + m (F (T )− F (s)))

where aN(s) is revenue already received and am (F (T )− F (s)) is the expected

remaining revenue.

7 Parameter Estimation

In estimating model (5.6) we need methods to construct initial estimates and

updates of the parameter vector

θ := (m, p, q, β).

Our solution to this problem proceeds as follows: 1) First, we estimate the

parameters of a data base of movies by maximum likelihood (Section 7.2). 2)

Then, we regress the estimated parameters on movie characteristics like genre,

rating, etc. (Section 7.3). 3) For a set of example movies, we use the movie

characteristics and regression parameters to estimate the initial parameter vec-

tor. 4) We update the parameter vectors for the example movies as real time

data becomes available in a Bayesian framework. Since we are dealing with

a non-linear model with non-Gaussian errors, we use a Markov-Chain Monte

Carlo (MCMC) setup, because the Kalman filter does not apply.
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We are mostly dealing with wide releases (see Section 2), so we set q = 0 in

the Bass model. The estimation of a fully specified Bass model poses substantial

econometric problems as described in Boswijk and Franses (2005). In particular,

for consistent estimation, observations beyond the hump are needed. Therefore,

we resort to the simpler form.8

7.1 Data

Our data set consists of the 100 most successful movies for each of the years

1998, 1999, and 2000 in terms of U.S. box office revenues. The data are obtained

from www.the-numbers.com and the Internet Movie Database (www.imdb.com).

We require the sample period to cover the entire life span of the movie. That

is, we do not use movies released prior to 1998 but still playing in 1998 and we

also do not use movies still playing in early 2001. This requirement leaves us

with a sample of 244 movies.

7.2 Maximum Likelihood Estimation

Maximum likelihood estimation of the revenue model in equation (5.7) is straight-

forward. Given a time series of box office revenue R(t), t = 1, . . . , T , we divide

the series by the average ticket price a to obtain the adoption series N(t),

t = 1, . . . , T . We use weekly data, so estimates of parameters p and β are thus

in units per week.

The likelihood function for the parameter vector θ = (m, p, β) is given by

L(θ|{N(t)}t=1,...,T ) =
T∏

t=1

1
βα(t−1,t)Γ(α(t− 1, t))

u(t)α(t−1,t)−1eu(t)/β , (7.1)

where α(t−1, t) = m(F (t)−F (t−1))/β and u(t) = N(t)−N(t−1), N(0) = 0.

8Kreider and Weinberg (1998) have also modeled movie revenues with an exponential
function.
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FIGURE 2 ABOUT HERE.

Figure 2 shows the histograms of the maximum likelihood estimates and

their logs for the movies in our data base.

7.3 Estimation Prior to any Revenue Data

If there are no revenue and thereby adoption data available, the adoption process

must be forecast using historical data from previously released movies. Variables

with forecast power discussed in the context of movies are, to name a few,

genre, rating, country of release, budget, presence or absence of stars, number

of screens, sexual or violent content, and sequel (Jones and Ritz 1991, Sawhney

and Eliashberg 1996, Neelamegham and Chintagunta 1999).

Here, we use a regression model where the logs of the maximum likelihood

estimates of the parameters of the movies in a database are regressed on dummy

variables for genre, rating, scenes of violent or sexual content, sequel, and on

the non-dummy variables number of initial screens and the log of the budget.

The estimation equations are, thus,

log θ̂i = log




m̂i

p̂i

β̂i




=




ξib
m + ηm

i

ξib
p + ηp

i

ξib
β + ηβ

i




, i = 1, . . . , N, (7.2)

where the (1×K) regressor vector ξi for i fixed consists of K explanatory vari-

ables, b(·) are parameter vectors, N is the number of movies in the database, and

η
(·)
i is white noise with mean zero and variance σ2

i . We assume that there is no

covariance across parameters and across movies. Plugging in the characteristics

ξ of the movie for which the initial adoption is to be estimated yields a point

estimate θ̂0 for θ at time t = 0, that is, before revenue data are available.
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Table 1 reports the regression parameter estimates from the regression of the

maximum likelihood parameter estimates on the movie characteristics. Since the

genre “Drama” is by far the most common, it is replaced by a constant. The

genre results thus reflect the marginal effect of a movie not being a drama.

The results show that the genre influenced only the estimates of the atten-

uation parameter p significantly for the movies in the sample. The genres

Suspense/Thriller and Action/Adventure have a significantly steeper decline

(higher p) in revenues than other genres. Scenes of violent content increased

the potential adoption m and decreased attenuation p significantly, an overall

positive effect on revenues. The most significant influences are the number of

initial screens and the budget. A higher number of initial screens increases the

market potential and reduces volatility. It also leads to a sharper drop-off in

revenues (higher p), this probably being a technical effect since a higher number

of initial screens is likely to be followed by a sharp drop in the number of screens.

A higher budget increases the market potential and leads to a slower decline

in revenues but increases volatility. The rating has apparently no significant

influence. Sequels have a relatively higher market potential.

TABLE 1 ABOUT HERE.

7.4 Update Scheme for Incoming Revenue Observations

Since the uncertainty in the revenue stream resolves rapidly during the first

weeks after the release, it is advisable to update the initial estimates θ̂0 as the

revenue observations come in. Since the process is non-Gaussian, a non-linear

Kalman filter approach is not feasible. Therefore, we employ a full Bayesian

update approach and evaluate the involved integrals by MCMC simulation.

Exploring the statistical properties of the estimated parameters from the

21



database movies as shown in Figure 2, we find that a log-normal distribution

describes the empirical distributions of the estimates of m and β best. For p, on

the other hand, a normal distribution seems appropriate. Table 2 reports the

estimated parameters of the prior distributions from a fit of the 244 estimated

adoption parameters.

TABLE 2 ABOUT HERE.

Both the normal and log-normal distributions are determined by a location

parameter µ and a scale parameter σ. The interpretation of the location pa-

rameter µ as the expected value of the (log of the) parameter θi allows us to

plug in the initial estimate θ̂0,i obtained from the regression model and then

update the initial estimate by convoluting with the likelihood equation (7.1) as

revenue observations arrive. For example, the likelihood for the first adoption

observation N(1), obtained by dividing the first revenue observation R(1) by

the average ticket price a, is given by

f(N(1)−N(0)|θ) =
1

βα(1) Γ(α(1))
u(1)α(1)−1 e

u(1)
β , (7.3)

where α(1) = m(F (1) − F (0))/β, u(1) = N(1) − N(0), and N(0) = 0. The

likelihood for the first two adoption observations is given by

f(N(2)−N(1), N(1)−N(0)|θ) = f(N(2)−N(1)|θ) f(N(1)−N(0)|θ), (7.4)

and so forth.

In the Bayesian update scheme, the marginal posterior distribution of the

updated parameter vector after the first adoption observation is obtained by in-

tegrating over the product of the prior distribution and the likelihood equation

(7.3). For the second observation, we consider the product of the prior distri-
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bution with equation (7.4), and so forth. The expected value of the marginal

posterior distribution then serves as the point estimate of the updated parame-

ter vector. For example, for the adoption parameter m, the marginal posterior

density of the update given the first adoption observation is given by

f(m|N(1)−N(0), θ̂0) =
∫

p

∫

β

f(N(1)−N(0)|θ)f(θ)dp dβ, (7.5)

where f(θ) is the full (multivariate) prior distribution. Evaluating this integral

by numerical integration is infeasible since we have estimates of the marginal

prior distributions only. In particular, the covariance of the parameters, here

p and β, is unknown. Therefore, we employ MCMC simulation (Liu, 2001 and

Gilks et.al., 1996) to evaluate equation (7.5).

8 Applications and Characteristics of Revenue

Options

In this section, we will first explore how well our proposed revenue process (5.6)

fits the data from our sample of movies. Then, we will apply the option pricing

method to the three movies The Fellowship of the Ring, Ocean’s 11, and The

Others of Figure 1. These movies were all released in 2001, one year after our

sample period ends. We do not apply the method to Gosford Park, since this is

a platform release. Finally, we will explore the sensitivities of the option price

formula to changes in the parameters (the “Greeks”).

8.1 Data Fit

In order to evaluate the model fit, we use real revenue data from the i =

1, . . . , 244 movies in our sample. We compute the discounted payoffs e−rT×
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max{0, Ri(T )−Ki,j} for an array of call options with strike set at multiples of

the movie budget. Since the budgets are different for all movies, we standardize

the budget to $100 million by multiplying the revenue by 100 million/budgeti.

Note that the option price formula is homogeneous under scalar multiplica-

tion, just like the Black Scholes formula.9 We set the grid of strikes to Kj =

xj100 million. The xj ’s span an equidistant grid between 0.2 and 7. These

multiples span most of the movies in our sample. Then, we average the dis-

counted payoffs over the movies i and plot the average against the different

strike multiples xj (Figure 3).

FIGURE 3 ABOUT HERE.

Note that this operation involves real data from the movies only. We compare

the discounted payoffs to the option prices (6.2) implied by our model and using

the maximum likelihood estimated parameters. If the model (5.6), the option

price formula (6.2), and the maximum likelihood estimator are appropriate,

the two resulting lines should be close to each other. Figure 3 shows that the

difference between the two lines is two orders of magnitude smaller than the

two lines, i.e. less than one percent. The plot also shows convex sensitivity

of the option price with respect to the call price, same as in the Black Scholes

framework.

8.2 Application of the Update

We study the three movies The Fellowship of the Ring, Ocean’s 11, and The Oth-

ers from Figure 1 as prototype movies. Table 3 shows the updating procedure.

Using the characteristics of the movies in the regression equation, we obtain
9The option price is given by e−rT E max{0, S − K} for any asset S. The function

max{0, S − K} is homogeneous and E is a linear operator, therefore the option price is
homogeneous.
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the initial estimates θ̂0 of the parameter vectors reported in the first row. We

update the estimate as the observations of the weekly revenue data come in by

evaluating (7.5) by MCMC. The priors are chosen according to Table 2, where

the means are set to the initial estimate θ̂0. The initial values of the Markov

chain are also set to θ̂0. Note how the update picks up under- or overestimations

in particular of m and β very quickly and corrects them in the right direction in

the first few weeks. Also note how much of the uncertainty resolves after about

five to six weeks for all three movies: the parameter estimates become stable

and begin to move towards the maximum likelihood estimate reported in the

last row of the tables.

TABLE 3 ABOUT HERE.

This procedure is fairly flexible and allows the use of other priors. For ex-

ample, for Ocean’s 12, released in 2004, one could use the maximum likelihood

parameters of Ocean’s 11 as priors instead of the regression results. Similar

adaptations could be made for the two sequels of The Lord of the Rings. This

structure is also suited to handle certain platform releases. Consider, for ex-

ample, The Life Aquatic with Steve Zissou, released in 2004, directed by Wes

Anderson. It was released for two weeks on two initial screens only. Then the

distributor Buena Vista decided for a wide release on 1,105 screens. Buena

Vista released a comparable movie by Wes Anderson, The Royal Tenenbaums,

in 2001. It was a similarly experimental release with only five screens in the

first week. Now, if during the experimental phase, The Life Aquatic with Steve

Zissou performed per theater as well as The Royal Tenenbaums, and it did, the

maximum likelihood estimator of the latter could be used as prior for the former

for the wide release after the experimental phase.
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8.3 A Simple Calculation Example

Consider The Others for a calculation example. Assume the distributor Mira-

max wishes to sell a call option on this movie and that the option is sold the

instant before the movie is released. Let the option expire in six weeks. At the

time of release, the continuously compounded risk-free rate was about 3.6%,

based on the U. S. Treasury bill secondary market rate. Plugging in the char-

acteristics (1,678 initial screens, production budget $17 million plus $10 million

in advertising) into the regression equation (7.2), we obtain the initial estimate

m̂0 = 1.0109e7, p̂0 = 0.2654, β̂0 = 92312.

The average ticket price in 2001 is given as a = $5.65. Hence, the forecast

am̂0 of peak revenue is about $57 million. Given the production budget and

the $10 million spent on advertising and distribution, the movie is forecast to

be profitable by U.S. box office receipts alone, and indeed it was, with a total

revenue take of about $96 million.

Let us set the exercise price at the total budget of $27 million. Inserting

these parameters into the option pricing formula gives a call option value of

$18,419,498.

Hence, if the distributor sold options on the entire position after six weeks,

it would collect revenue of $18,419,498 up front. At expiration, six weeks later,

total revenue was $73,422,887 implying attendance of 12,995,201. Thus, the

option would have expired with a payoff

max {0; $73, 422, 887− $27, 000, 000} = $46, 422, 887.

After the remaining eight weeks of the movie, the distributor would then be left

with net revenue of $96,471,845 - $46,422,887 = $50,048,958. Given production

and distribution costs of $27,000,000 and adding the option premium, Miramax

would have realized a profit of about $41.5 million. Of course, it might not sell
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options on the entire movie proceeds. In addition, some of the proceeds go to

the theaters, largely to cover their costs.

If the holder of the option wished to sell the option during the six weeks

lifetime, the updated parameters from Table 3 would be used to evaluate the

option. The call was irreversibly in the money from week two on, with $32

million in cumulative revenue in week two. The sequence of call option prices

according to the realizations of cumulative revenue and the parameter updates

is presented in Table 4

8.4 Option Price Update for the Prototype Movies

We repeat this computational exercise for each of the three movies and calculate

the call option prices for a grid of strikes similar to Figure 3. The expiries are

set at week 20 for The Lord of the Rings, week 15 for Ocean’s 11, and week 14

for The Others. The grid of strikes is set at multiples xj of the budget, as in

Figure 3. We then plot the option prices C(t, T ) for selected t against the strike

multiples xj .

Figures 4 through 6 show the graphs. The option price profiles all approach

the payoff with elapsed time. For The Lord of the Rings, the approach is strictly

from below, for the other two movies, the line switches to the top of the payoff

profile. As a benchmark, each graph also shows the option price C(0, T )MLE

computed from the maximum likelihood estimator. This uses all revenue data,

which is not available at time t = 0.

FIGURE 4, 5, 6 ABOUT HERE.
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8.5 Sensitivities

In this section, we will study the sensitivities of the option price formula (6.2)

with respect to the interest rate r, and with respect to the parameters m, p, β

of the revenue generating Gamma process (5.6). The sensitivity with respect to

the strike price can be seen in Figure 3. The derivative has convex shape, as

in standard options. The derivatives of (5.6) can be obtained analytically but

the expressions are long and cumbersome and offer little additional insight over

simple numeric experiments. We therefore present the latter here.

FIGURE 7 ABOUT HERE.

We will study the sensitivities in the context of the option pricing example

presented in Section 8.3. Figure 7 shows the dependence of the option price on

variations in the different parameters. An increase in the risk free rate r leads to

a decrease in the call option price, contrary to the Black-Scholes situation. The

reason is that we price under the physical measure. The expected payoff does

not depend on the interest rate and thus a higher interest rate only increases

the denominator of the discount factor. An increase in the adoption m implies

a higher option price, since it translates directly into higher revenues. The

sensitivity with respect to the attenuation p reflects the two-sided dependency

of the revenue process on p: While a low p means that the revenue process

starts at a relatively low point, it also means that it decreases more slowly. On

the other hand, a large p starts the revenue process high but also leads to a

quick drop-off. The higher the volatility parameter β, the higher the option

price and this in a convex way. The reason is that high volatility increases the

chance that the option moves irreversibly into the money. Since there are no

negative increments, it will stay in the money, so high volatility is unambiguously

beneficial for the holder of the call.
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9 Summary and Conclusions

In this paper we have examined the pricing of options on a non-decreasing

underlying. These instruments have surfaced in the form of contingent claims

on the revenue streams of movies, concert tours, and music recordings. The

options are typically sold before any revenue is generated; hence, at that time

there is no observable value of the underlying. Moreover, the non-decreasing

revenue stream poses significant challenges to modeling the stochastic evolution

of the underlying.

We develop a stochastic model based on the notion of the Bass model that

an individual’s decision to purchase the product is driven by two factors: the

systematic influence of others who have already purchased the product and

an idiosyncratic effect independent of the actions of others. To capture the

stochastic component, we embed the Bass model in a gamma process. We

assume and test empirically that this stochastic process is uncorrelated with

the market factor. We derive boundary conditions, put-call parity, results for

early exercise of American options, and of course option pricing equations.

Implementing the model poses significant challenges because we have no

observations on the target movie at time zero. Our approach to this problem is

to obtain an initial estimate of the parameter vector using a historical database

of movies. We update the initial estimate as the revenue observations become

available in a Bayesian framework.

Hollywood has shown considerable ingenuity in partnering with Wall Street

to offer these instruments, as well as securitized equity claims on movie revenues.

The results of our paper can be applied to the pricing of these types of options

but could also be useful for other possible structures. For example, the owner

of an oil field might sell a call option on oil revenues where the exercise price

is the production cost. The value of such an option would be driven by two
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factors, a non-decreasing but stochastic stream of output and a stochastic price.

Options on revenue streams would seem to be a natural component of real option

theory, where claims are often a function of revenues rather than traded and

easily valued assets. In addition, the modeling of non-decreasing asset streams

is of great interest in the field of credit derivatives, where payoffs are based on

the cumulative credit losses of a debt portfolio. Our gamma process could be

applicable to this type of problem.
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Table 1: Regression results for equation (7.2) for 244 movies.

log(m) log(p) log(β)

Genre

Constant 10.80*** (0.80) -0.17 (0.27) 4.78*** (1.29)

Comedy -0.01 (0.12) 0.08 (0.09) 0.12 (0.19)

Romantic

Comedy
0.31* (0.17) -0.21 (0.13) 0.06 (0.28)

Suspense /

Thriller
-0.23 (0.17) 0.23* (0.13) -0.06 (0.28)

Action /

Adventure
-0.20 (0.14) 0.20* (0.11) -0.24 (0.23)

Science

Fiction
-0.03 (0.21) 0.20 (0.16) 0.04 (0.33)

Horror -0.30 (0.18) 0.21 (0.14) -0.03 (0.29)

Animated -0.12 (0.24) -0.03 (0.18) 0.40 (0.38)

Initial

Screens
1e-4* (6e-5) 4e-4*** (4e-5) -5e-4*** (1e-4)

log(Budget) 0.31*** (.05) -0.12*** (0.04) 0.45*** (0.08)

Rating

PG -0.27 (0.26) 0.05 (0.20) -0.48 (0.42)

PG-13 -0.23 (0.27) 0.28 (0.21) -0.69 (0.44)

R -0.33 (0.29) 0.41* (0.21) -0.76 (0.45)

Sex -0.09 (0.09) 0.04 (0.07) -0.16 (0.14)

Violence 0.20** (0.10) -0.21*** (0.08) 0.20 (0.16)

Sequel 0.33* (0.14) -0.17 (0.11) 0.11 (0.48)

R2 0.34 0.40 0.25

***, **, * denote significance at the two-sided 99%, 95%, and 90% significance level, respec-

tively.
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Table 2: Estimated parameters of the prior distributions.

m̂ p̂ β̂

log-normal normal log-normal

µ 16.1514 0.3788 10.8144

σ 0.7095 0.1436 1.0828
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Table 3: Updating the parameter estimates for The Fellowship of the Rings,

Ocean’s Eleven, and The Others.

The Fellowship Ocean’s 11 The Others

m̂ p̂ β̂ m̂ p̂ β̂ m̂ p̂ β̂

θ̂0 2.3439e7 0.4006 106518 2.2346e7 0.3603 118013 1.0109e7 0.2654 92312

update 1 3.6908e7 0.7900 284935 2.3271e7 0.6700 172701 9.7506e6 0.5852 131455

update 2 3.3473e7 0.6281 2460561 2.9258e7 0.4776 310862 1.1989e7 0.4947 349189

update 3 3.7361e7 0.5595 2111715 3.4842e7 0.3568 348281 1.3707e7 0.3981 372646

update 4 4.1595e7 0.4877 1709611 3.7433e7 0.3139 656265 1.5518e7 0.3256 402052

update 5 4.5696e7 0.4260 1424676 4.0009e7 0.2795 486442 1.7229e7 0.2774 301539

update 6 4.8812e7 0.4001 1166370 4.0930e7 0.2673 408726 1.8465e7 0.2498 229362

update 7 5.1581e7 0.3815 940020 4.1966e7 0.2576 339646 2.0002e7 0.2216 186457

update 8 5.3312e7 0.3737 814861 4.1045e7 0.2673 341085 2.1466e7 0.1988 162932

update 9 5.4644e7 0.3520 761602 4.0585e7 0.2754 326693 2.2101e7 0.1907 133393

update 10 5.5762e7 0.3390 700355 4.0139e7 0.2850 325254 2.2094e7 0.1917 120696

update 11 5.6481e7 0.3245 665736 3.9764e7 0.2930 323815 2.1499e7 0.2005 127713

update 12 5.7227e7 0.3126 625792 3.9347e7 0.3021 339646 2.0891e7 0.2111 141012

update 13 5.7573e7 0.3004 612477 3.9203e7 0.3079 335328 2.0824e7 0.2141 134463

update 14 5.7892e7 0.2874 609814 3.9232e7 0.3096 325254 2.0624e7 0.2196 135265

update 15 5.7892e7 0.2720 617803 3.9419e7 0.3098 302227

update 16 5.8079e7 0.2602 620466

update 17 5.8079e7 0.2510 609814

update 18 5.8292e7 0.2434 601826

update 19 5.8691e7 0.2371 580522

update 20 5.8611e7 0.2302 575196

MLE 6.2246e7 0.2425 537915 3.6797e7 0.3144 267687 2.0224e7 0.2200 108226
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Table 4: Update of the call option price for The Others using the updated

parameter estimates (“updated”) and the initial estimates θ̂0.

week option price updated θ̂0

0 C(0, 6) 18,419,498 18,419,498

1 C(1, 6) 16,074,244 19,205,766

2 C(2, 6) 26,797,650 27,065,755

3 C(3, 6) 35,425,833 33,219,443

4 C(4, 6) 44,303,025 41,036,539

5 C(5, 6) 46,374,986 44,017,188

payoff C(6, 6) 46,422,887 46,422,887
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Figure 1: Weekly and cumulative U.S. box office revenue for four example
movies.
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Figure 2: Histograms of the estimated parameters and their logs for 244 movies.
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Figure 3: The smooth curve shows call payoffs e−rT max{0, Ri(T )−Ki,j} from

the movies in our data base, averaged over the i = 1, . . . , 244 movies. The

strike prices Ki,j = xjBudgeti are set at multiples xj of the movie budget; the

xj = 0.2 + 0.09j, j = 0, . . . , 30, are plotted on the x-axis. Most of the movies in

our sample earned between 0.2 and 7 times their budget. The smooth curve also

shows the call option prices Ci,j(0, T ) given by (6.2) and using the maximum

likelihood estimators, averaged over the i = 1, . . . , 244 movies. The two lines

collapse, indicating a good fit of our model to the real movie data. The error

Ci,j(0, T ) − e−rT max{0, Ri(T ) − Ki,j}, averaged over i = 1, . . . , 244, is two

orders of magnitude smaller and vanishes at the left-hand y-axis. It is therefore

plotted on the bottom scaled at the smaller y-axis on the right.
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Figure 4: Option price update for The Lord of the Rings. Selected option

price profiles are shown. C(0, 20) is computed from the initial estimate θ̂0,

the C(t, 20) are computed from the cumulative revenue at t and the updated

parameter estimates from (7.5). C(0, 20)MLE gives the MLE estimate of the

call at time t = 0 (using data that is not available at t = 0.)
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Figure 5: Option price update for Ocean’s 11. Selected option price profiles are

shown. C(0, 15) is computed from the initial estimate θ̂0, the C(t, 15) are com-

puted from the cumulative revenue at t and the updated parameter estimates

from (7.5). C(0, 15)MLE gives the MLE estimate of the call at time t = 0 (using

data that is not available at t = 0.)
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Figure 6: Option price update for The Others. Selected option price profiles are

shown. C(0, 14) is computed from the initial estimate θ̂0, the C(t, 14) are com-

puted from the cumulative revenue at t and the updated parameter estimates

from (7.5). C(0, 14)MLE gives the MLE estimate of the call at time t = 0 (using

data that is not available at t = 0.)

43



0.02 0.04 0.06 0.08 0.1

1.83

1.835

1.84

1.845

x 10
7

Risk−free Rate r

O
pt

io
n 

P
ric

e

0.5 1 1.5

x 10
7

1

2

3

4
x 10

7

Adoption m

O
pt

io
n 

P
ric

e

0.2 0.4 0.6 0.8

0.5

1

1.5

2

2.5

x 10
7

Attenuation p

O
pt

io
n 

P
ric

e

5 10 15

x 10
4

1.842

1.842

1.842

1.842

1.842

x 10
7

Vol coefficient β

O
pt

io
n 

P
ric

e

Figure 7: Sensitivities of the option price formula (6.2) with respect to the risk

free rate r and the parameters (m, p, β) of the revenue model (5.6).
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