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Abstract

This paper presents a parsimonious, implementable model for the estimation of the short-
and long-term expected rates of return on the S&P 500 stock market Index. The model
estimates a parametric form for the Market Price of Risk, the Sharpe Ratio, of the S&P 500
Index. In addition to short- and long-term risk-free rates of interest, the model’s empirical
estimation makes use of two forward-looking measures: The economy’s growth rate estimate;
and the option market’s (priced) implied volatility on the S&P 500 Index. The model
accounts for past rates of return by modeling and estimating the impact of an assumed
increasing relative risk aversion, which gives rise to an increased willingness to invest in
risky assets as the realized rate of return for the recent past is “high.”

Specifically, conditioning on three variables — the risk-free rates of interest r1t and r30,t,
the implied volatility VIXt on the Index, and the realized S&P 500 Index rate of return
over the past five–six years S&P 500t/S&P 500t−5,t−6 — the model generates prospective
expected rates of return µt of the form

µt =



r1t +

(
λ0 + λ1

S&P 500t

S&P 500t−5,t−6

)
VIXt for a one-year horizon

r1t + β̂ (rLt − r1t) + a0 + a1 VIXt + a2VIXt
S&P 500t

S&P 500t−5,t−6

+ a3
S&P 500t

S&P 500t−5,t−6

for the long-term

where the current prevailing Sharpe Ratio is λ0+λ1 (S&P 500t/S&P 500t−5,t−6) , and λ0, λ1, β̂,
a0, a1, a2 and a3 are coefficients estimated from the data.
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1 Introduction

Since financial markets began modern trading of equity securities, financial economists have

struggled to understand the equity risk premium, both domestically and across international

markets. Summarizing as it does the rate of return on investable risky wealth in the economy,

the equity risk premium has constituted the compensation for equity investments; it has been

studied as measures of the economy’s well-being, and as a broad measure of the success of

market-based economies.1

Estimating the contemporaneous (conditional) expected rate of return on equity markets,

and properly capturing its intertemporal variation, has been the source of more modern

analyses. We seek to add to the literature by addressing a market-efficient estimate of time-

varying expected returns, grounded in theory but parsimonious in application. We estimate

a parametric form for the Market Price of Risk, or the Sharpe Ratio, of the S&P 500 Index.

In addition to short- and long-term risk-free rates of interest, our empirical implementation

makes use of two forward-looking measures: The economy’s growth rate estimate; and the

option market’s (priced) implied volatility on the S&P 500 Index. Further, our model explic-

itly accounts for realized wealth levels by modeling and estimating an assumed increasing

relative risk aversion, which gives rise to an increased willingness to invest in risky assets

when the realized rate of return for the recent past is “high.”

Time-varying expected returns find at least two uses in practical applications. In the

investments arena, various asset-allocation models require as input an expected rate of return

on the “market portfolio.” In capital-budgeting decisions, a key ingredient is the asset’s

expected rate of return, which uses as (one of the) inputs, the expected rate of return on the

market.

The paper is now structured as follows. Section 2 reviews the literature on market

risk premia and their intertemporal variation. Section 3 follows with a presentation of

the theoretical models we wish to estimate. Section 4 contains the empirical tests, and

their associated results. Section 5 includes robustness checks. Section 6 summarizes and

concludes.

1 For example, financial economists have sought to understand the U. S. equity risk

premium in comparison to markets where a breakdown of trading occurred in the second

and fourth decades of the 20th century.
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2 The U. S. Equity Risk Premium

The current literature pertaining to the market risk premium starts with the CAPM model

of Sharpe (1964) and Lintner (1965). In deriving a relationship between equity returns and

a market-wide risk factor, these authors laid the foundation for the countless theoretical

and empirical asset pricing articles that have become the stable of the financial economics

literature. One of the most heavily tested and examined aspects of the model is the notion

of the equity risk premium, or alternatively, the market price of risk or Sharpe ratio. Sharpe

(1966) introduced this notion of reward to variability ratio in describing mutual funds, later

denoted the Sharpe ratio or measure. As described in Sharpe (1994), and similar to our

work here, the ex-ante Sharpe Ratio measures expected returns — in contrast to the distinct

ex-post realized returns. This leads to several questions often debated within the literature:

Estimation of the intertemporal equity price risk premium, and the factors that determine

the magnitude of the premium. In this paper we attempt to address these issues.

A great deal of attention has been placed on examining the relationship between con-

ditional volatility and the market risk premium. The theoretical implication of the CAPM

is that there is positive relationship between the level of volatility and the size of the risk

premium. However, the empirical evidence is mixed. Campbell (1987) and Glosten, Jagan-

nathan and Runkle (1993) have documented a negative relationship between the conditional

volatility and the risk premium, contrary to economic theory, while Harvey (1989), and

Turner, Startz and Nelson (1989) found a positive relationship. Scruggs (1998) decomposed

the CAPM model into a partial relation in a two-stage estimation, and was thus able to

explain away the negative relationship of Campbell (1987) and Glosten et al. (1993). Brandt

and Zhou (2004) attempt to resolve these differences in the literature regarding contem-

poraneous correlation by implementing a VAR technique. By incorporating time-varying

volatility, their conclusions suggest that these differences can be explained by the condi-

tional and unconditional correlations.

The evidence on time-varying expected returns has been demonstrated by the volatility

ratio tests of LeRoy and Porter (1981), and the long-horizon autoregressions of Fama and

French (1988a, b). These findings have been corroborated by documenting time-varying risk

premium by Ferson and Harvey (1991) and Evans (1994). Campbell and Viceria (2005)

take the time variation in expected returns a step further by suggesting that investors,

particularly aggressive investors, may want to engage in market-timing (or tactical asset

allocation) strategies aimed at maximizing short-term returns, based on the predictions of

their return forecasting model. Still, there is considerable uncertainty about the degree of
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asset return predictability, as noted by Pástor and Stambaugh (2001), making it hard to

identify the optimal market timing strategy. Attempting to capture the time variation of

expected returns has been extensively examined. Using a multi-beta asset pricing model,

Ferson and Harvey (1991b) incorporate risk exposure to the market as well as the interest

rate and inflation to explain realized returns. Others, such as Lewellen (1999, 2004), have

used explanatory variables such as the dividend yield, short rate, term premium, Book-to-

Market, and the default premium; however, in light of the statistical issues brought up in

Boudoukh and Richardson (1993), Stambaugh (1999), and Ferson et al. (2003), the validity

of the results are still in question.

Finally, in their highly influential piece, Mehra and Prescott (1985) first documented the

equity premium puzzle. They found that the annualized rate of return on stocks in excess

of the risk-free rate is higher than can be explained by the classical theories in financial

economics by about 6.8%. Mehra (2003) further decomposed the fundamental pricing re-

lationship and demonstrated that the growth rate of consumption does not vary enough

to be consistent with the observed high equity premium. In calibrating the model, using

upper-bound levels for risk-aversion generates a risk-free rate that is too high and a risk-

premium that is too low. While this is troubling, Mehra (2003) points out that this is a

quantitative puzzle, and that current theory is consistent. Many authors have attempted to

resolve this puzzle, including Campbell and Cochrane (1999) and Constantinides (1990), by

altering preferences, using incomplete markets, survivorship bias, and omitting rare events.

As of yet, there is no current solution to this problem.

Our work will extend the prior knowledge by incorporating all three strands of this

literature. By decomposing a simple model for valuing stocks, such as the dividend growth

model, into various parts, and extracting the ex-ante market price of risk, we can explain the

time-variation in the market price of risk with a simple measure of investor sentiment. This

measure is negatively related to the premium, such that the higher the perceived wealth,

the lower the market price of risk. However, and similar to the Mehra and Prescott (1985)

findings, the predicted value of the expected return is still approximately 4%–5% less than

the realized returns over the given evaluation period, consistent with the findings of Fama-

French (2002). Using our measure, we are able to explain as much as 50% of the variation

in expected returns; thus providing strong indication of potential peaks and troughs in the

market.
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3 The Models

Our model is a straightforward combination of the Gordon-Shaprio (1956) – Williams (1938)

dividend-growth model and the Sharpe-Lintner security market line. The alternate models

we postulate and test vary by their:

1. Interpretation of the Livingston/Phildelphia Fed short- and long-term growth rates

2. Use of the VIX implied vol value in terms of volatility

3. Examination of the long-term vs. one-year expected rates of return on the S&P 500

3.1 A Short-Term Expected Return Model

Consider first the interpretation of the 1-yr. Livingston growth rate g1t ≡ gt as both a short-

term dividend growth rate as well as the capital-gains component of the S&P 500. In that

case, we have

µt =
D0t (1 + g1t)

Pt

+ g1t, (1)

where

µt = Expected/required rate of return on the equity asset as of date t

Pt = Price of equity asset at date t

D0t = Dividends payable over the past 12 mos., as of date t, and assumed to

satisfy the relationship D1t = D0t (1 + g1t)

g1t = One-year dividend growth rate as of date t and capital-gains forecast over

the next twelve months

From the security market line, we have, at date t,

µt = r1t + λtσt, (2)

where

λt = Market Price of Risk, or Sharpe Ratio, as of date t

r1t = One-year Treasury Bill rate of interest as of date t

σt = Equity asset’s annualized volatility, as of date t
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Assuming that VIXt = σt, we can equate eq. (1) to eq. (2) to yield

D0t

Pt

(1 + g1t) + g1t = r1t + λtVIXt

which can be solved for λt :

(D0t/Pt) (1 + g1t) + g1t − r1t

VIXt

= λt (3)

Assuming the observability of {D0t, Pt, g1t, r1t, VIXt} , the LHS of (3) is an observable da-

tum.

The final step of this model is to provide a functional, estimable and empirically testable

form for λt. To do so, we rely on financial theory for guidance. Specifically, we assume the

representative investor exhibits increasing relative risk aversion, so that λt can be modeled

as a function of investable (presumably, per capita) wealth. We proxy for that per capita

wealth level by making λt a function of the past realized return on the S&P 500:

λt =



λ0 + λ1
S&P 500t

S&P 500t−T

λ0 + λ1
S&P 500t

S&P 500t−T

+ λ2

(
S&P 500t

S&P 500t−T

)2
(4)

where λ0 > 0, λ1 < 0 and λ2 > 0 are coefficients to be estimated, for some value of T.

The postulated negative sign of λ1 reflects our assumption that, as S&P 500t/S&P 500t−T

increases and investors feel “wealthier,” their required compensation per unit standard devi-

ation declines. When modeled in its quadratic form, the postulated λ2 > 0 reflects a standard

extension permitting decreasing marginal effect of wealth.

Thus, the empirical relationships we will test combine the two equations (3) and (4) to

produce:

(D0t/Pt) (1 + g1t) + g1t − r1t

VIXt

=



λ0 + λ1
S&P 500t

S&P 500t−T

λ0 + λ1
S&P 500t

S&P 500t−T

+ λ2

(
S&P 500t

S&P 500t−T

)2
(5)

Interpreting this variant of the model as a test of a short-term, one-year Sharpe ratio —

in contrast to the models in sections 3.2 through 3.4 below – we will seek to explore how

well the simple model of the form (5) explains the time-varying changes in our proxy for

expected returns, whether the estimated signs and magnitudes of {λ0, λ1, λ2} conform to
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economic intuition. Given the results obtained in (5), the quadratic model’s implied ex-ante

expected rate of return on the S&P is given by

µt = r1t +

λ0 + λ1
S&P 500t

S&P 500t−T

+ λ2

(
S&P 500t

S&P 500t−T

)2
VIXt, (6)

with the linear model obtaining with its respective {λ0, λ1} parameters.

For completeness, we will contrast those results with analogous results for the intertem-

poral variation in realized returns.2

3.2 Two-Growth Rate Model

In taking explicit notice that post-June 1990 the Livingston data provide both a one-year

growth GDP growth-rate forecast g1 as well as a ten-year forecast g10, the next model takes

explicit cognizance of these two growth rates. Specifically, we now interpret these two growth

rates as a one-year and infinite-maturity dividend growth rates, giving rise to the valuation

model

Pt =
D1t

µt − g10,t

=
D0t (1 + g1t)

µt − g10,t

,

which can be sequentially inverted to solve for λt ≡ (µt − r1t) /VIXt :

µt =
D0t (1 + g1t)

Pt

+ g10,t (7)

λt =
(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt

(8)

For the post-June 1990 for which the full set of data (i.e., g10,t) are available, the linear and

quadratic testable versions of (8) are respectively given by:

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt

=



λ0 + λ1
S&P 500t

S&P 500t−T

λ0 + λ1
S&P 500t

S&P 500t−T

+ λ2

(
S&P 500t

S&P 500t−T

)2
(9)

The linear and quadratic ex-ante expected returns is once again given by expression (6),

with the respective {λ0, λ1, λ2} parameters having been estimated using (9).

2A robustness test will be offered to examine measurement errors in the growth-rate g
and a relaxation of whether VIX is the proper proxy for volatility.
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3.3 Two-Growth Rate, “Term Structure-Adjusted” Model

In beginning to make the transition to a long-term expected return model, consider the issue

of the slope of the term structure of interest rates, of which investors are presumably aware

and one which they may well take into account in establishing equity required expected rates

of return. Thus, consider a re-formulation of (9) which permits us to elicit from the data

the combination of short- and long-term rates which investors contemplate.

Proceeding from (7), we have the risk premium equation

µt − r1t − β (rLt − r1t) = (D0t/Pt) (1 + g1t) + g10,t − r1t − β (rLt − r1t) , (10)

where the long maturity can be L ∈ {10, 30} . Thus, by estimating which β best explains

the market price of risk, we can infer how investors “optimally” choose their target interest

rate (and maturity).3 We proceed to estimate β and infer its implication, in two steps:

1. If we divide the LHS of (10) by VIXt, we obtain a term structure-adjusted measure of

the market price of risk λt. Thus, we have

λt ≡
µt − r1t − β (rLt − r1t)

VIXt

=
(D0t/Pt) (1 + g1t) + g10,t − r1t − β (rLt − r1t)

VIXt

. (11)

Having in (4) modeled the market price of risk as linearly and quadratically dependent

on the wealth accumulation factor S&P 500t/S&P 500t−T , we can apply that model to

the RHS of (11):

(D0t/Pt) (1 + g1t) + g10,t − r1t − β (rLt − r1t)

VIXt

= λ0 + λ1
S&P 500t

S&P 500t−T

(12)

2. To obtain an empirical estimate of β in the linear model, we first transpose it to the

RHS of (12):

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt

= λ0 + λ1
S&P 500t

S&P 500t−T

+ β
rLt − r1t

VIXt

. (13)

Substituting the estimated parameter β̂ from (13) back into (12) produces the esti-

mated {λ0, λ1} parameters.

The estimated coefficients obtained from constraining β = β̂ are of course identical to

the ones obtained in the regression (13), but their interpretation is now different: We have

3Thus, if L = 30 and β = 1, then r1t +β (rLt − r1t) = rLt = r30,t, in which case the “target
maturity” is L = 30 years.

7



elicited the optimal term structure adjustment to the expected rate of return µt. Specifically,

with this information in hand, the quadratic model’s prospective date t expected rate of

return is given by

µt = r1t + β (rLt − r1t) +

λ0 + λ1
S&P 500t

S&P 500t−T

+ λ2

(
S&P 500t

S&P 500t−T

)2
VIXt.

3.4 A Long-Term Expected Rate of Return Model: Two-Growth

Rate, Term Structure Adjustment, Stochastic Volatility Model

In seeking a long-term expected return model, we recognize the short-term, one-month nature

of VIX. In accordance with the previous work of Doran and Ronn (2005) and others, for

longer-term periods, especially those exceeding one year, investors are cognizant of the well-

documented mean-reversion in VIX. This final model will take cognizance of this mean-

reversion.

Incorporating stochastic volatility helps capture the long-run component of volatility, as

well as the level to which volatility reverts. In doing so, the weight w on current versus

long-run volatility can be determined endogenously. Accounting for mean reversion requires

the adjustment of the volatility variable to

w VIXt + (1− w)
√

θ, (14)

instead of dividing through by VIXt. As shown in Doran and Ronn (2005), the stochastic

model for volatility changes is given by

dσ2
t = κ

(
θ − σ2

t

)
dt + ξσt dz, (15)

where κ is the speed of mean reversion, θ is the level to which volatility reverts, and ξ is the

variation in volatility. The relationship between κ and w in (14) is given by the weighting

w = exp {−κT} for whatever T value investors have “in mind.” Whereas this model has

been empirically verified, for our purpose here we need not discretize (15), but rather use its

analytical implication (14).

With the expression (14) replacing VIXt in (13), the expression (13) becomes

λt ≡
µt − r1t − β (rLt − r1t)

w VIXt + (1− w)
√

θ
=

(D0t/Pt) (1 + g1t) + g10,t − r1t − β (rLt − r1t)

w VIXt + (1− w)
√

θ

= λ0 + λ1
S&P 500t

S&P 500t−T

+ β
rLt − r1t

w VIXt + (1− w)
√

θ
(16)

Since the parameters {w, θ} are unknown, the estimation procedure for (16) is altered.

Multiplying through by the “blended” volatility measure w VIXt + (1− w)
√

θ, we have
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D0t (1 + g1t)

Pt

+ g10,t − r1t =

(
λ0 + λ1

S&P 500t

S&P 500t−T

) [
w VIXt + (1− w)

√
θ
]

+ β (rLt − r1t)

= λ0 (1− w)
√

θ + λ0w VIXt + λ1w VIXt
S&P 500t

S&P 500t−T

+ λ1 (1− w)
√

θ
S&P 500t

S&P 500t−T

+ β (rLt − r1t)

≡ a0 + a1 VIXt + a2 VIXt
S&P 500t

S&P 500t−T

+ a3
S&P 500t

S&P 500t−T

+ β (rLt − r1t)

(17)

The regression formulation in (17) merits several comments:

1. The dependent variable is no longer λt, but rather the term-structured adjusted risk

premium

2. The regression is not unconstrained, as there is a linkage amongst the regression para-

meters {a0, a1, a2, a3} : a1/a2 = λ0/λ1 = a0/a3

3. The regression formulation does not permit the distinct, separate identification of all

variables of interest {λ0, w, θ, λ1, β} — the regression is in that sense underidentified

— but it does permit their estimation in the form they are required in order to calculate

the expected return µt : {a0, a1, a2, a3, β} . To see this, note that the (linear model’s)

expected return µt is now given by:

µt = r1t + β̂ (rLt − r1t) + λ0 (1− w)
√

θ + λ0w VIXt

+ λ1w VIXt
S&P 500t

S&P 500t−T

+ λ1 (1− w)
√

θ
S&P 500t

S&P 500t−T

≡ r1t + β̂ (rLt − r1t) + a0 + a1 VIXt

+ a2 VIXt
S&P 500t

S&P 500t−T

+ a3
S&P 500t

S&P 500t−T

4. The R2 of the regression formulation (17) is not meaningful, in that it includes the re-

gressor rLt−r1t on its RHS. Rather, using β̂ as determined from regression (17), what is

meaningful is the R2 of (D0t/Pt) (1 + g1t)+g10,t−r1t− β̂ (rLt − r1t) regressed on the re-

maining RHS variables {VIXt, VIXt · S&P 500t/S&P 500t−T , S&P 500t/S&P 500t−T}

3.5 Realized Returns

In order to properly compare and contrast the results obtained under (5), we will perform

analogous results for realized returns, which will replace expected returns in the LHS of (5):

9



For monthly annualized realized returns given by Rm
t ≡

[(
S&Pt+1/12 + Dt+1/12

)/
S&Pt

]12
−1,

we will perform tests of the type

Rt − rt

VIXt

= λ0 + λ1
S&P 500t

S&P 500t−T

.

This process will then be repeated for the three models outlined in eqs. (9),(13), and (17).

4 Empirical Results

4.1 Data

To derive the expected Sharpe ratio, or λ, daily prices of the S&P 500 and the VIX/VXO

index were collected from CRSP and the CBOE respectively from January 1986 through

December 2004. VIX is a key measure of market expectations of near-term volatility conveyed

by S&P 500 stock index option prices. Since its introduction, VIX has been considered the

premier barometer of investor sentiment and prospective market volatility. The VXO index

was substituted up until 1990 since there were no observations of VIX prior to that date.

This was done in part to infer estimates of expected λ prior to the October 1987 crash.

The data for the dividend yield come from Standard and Poors dividend bulletin, which

reports quarterly dividends. To construct the dividend yield/payout, the sum of the prior

four dividends is calculated prior to dividing by the current level of S&P 500.4 For the short-

term risk-free rate, daily 1-year Treasury bill yields were collect from the Federal Reserve.

For the long-term rate, the 10-year T-note yields were used. In addition, a mixture of the

30-year and 20-year T-bill rate were collected to provide an alternative measure.5

To proxy for the long-term and short-term dividend growth rates, the Livingston Survey

was used, which provides semi-annual GDP forecast from economists from industry, govern-

ment, banking, and academia. The feasibility of using the Livingston data as an accurate

forecasting tool has been examined by many authors, incorporated in over 98 studies as of

1997, noted in the summary piece by Croushore (1997).6 In deriving the implied short-term

4We had sought to use futures contracts on the S&P to obtain implied future dividend
yields. Unfortunately, active futures contracts do not extend the full one-year maturity
required to calculate such an implied dividend yield. Using long-dated LEAPS to infer the
value of long-dated S&P futures contracts might provide an implied ex-ante dividend yield,
albeit in this case one driven by the risk-neutral rather than statistical expectations.

5The last observed date for the 30-year T-bill is on 2/15/2002. All subsequent dates use
the 20-year T-bill yields.

6Most of the noted flaws in using the Livingston data have focused on the CPI forecasts,
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dividend/capital gains growth rate, the forecast for the current year and next year of nominal

GDP are used to construct a one year expected growth rate.7 Since the data’s frequency is

semi-annual, this potentially gives rise to estimation problems if the growth forecast is not

constant within the semi-annual period. This potential measurement error will be accounted

for in robustness checks presented in section 5 and presented in detail in the Appendix. For

the long-term growth rate, the Livingston data provides a 10-year forecast. However, one

particular drawback in using the 10-year forecast is that the data only spans June 1990

through December 2004, reducing the number of observations and eliminates the October

1987 crash period. The summary statistics for all data are provided in Table 1.

4.2 Estimation Procedure for Short-term Expected Returns

To explain the time-variation in the expected Sharpe ratio, a measure of perceived wealth

was constructed. Our proxy for investor sentiment is the ratio of the current level of the

S&P 500 to some prior level of the index. Our hypothesis contends that there is a negative

relationship between this ratio and the market price of risk. If the intercept term is positive,

as should be expected, then the higher this ratio is, the lower the expected rate of return

required to satisfy aggregate investor preferences.

Recalling the hypotheses stated in eq. (5)

(D0t/Pt) (1 + g1t) + g1t − r1t

VIXt

=

 λ0 + λ1xt + et

λ0 + λ1xt + λ2x
2
t + et

where

xt is alternately defined to be S&Pt/S&Pt−5, S&Pt/S&Pt−6 or S&Pt/S&Pt−5, t−6

S&Pt−5, t−6 is the average value of the S&P index over the time period between

five and six years ago

This formulation provides an intuitive representation of investors’ perceptions. It is possible

that investors have shorter, or perhaps longer, time horizons, but going back five to six years

captures a limited-memory aspect in that the market is aware of past market highs and lows,

but its memory is finite.8

and not GDP. In particular, Dokko and Edelstein (1989) find that the Livingston stock
market surveys are unbiased estimators of realized stock returns.

7Base values are not used as there are discrepancies in the data as noted by the Philadel-
phia Fed.

8Such limited-memory allows us to indirectly model the per capita wealth which we seek
to proxy, and which a long-term upward-drift in the S&P would fail to capture.
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The mean value over the period for S&Pt/S&Pt−5 is 1.79, equivalent to an annual re-

turn of 12.4%. The maximum and minimum values were 3.21 (26.2%) and .76 (−5.31%),

respectively. In testing the hypothesis (5), a quadratic formulation was included to capture

decreasing marginal wealth effects.

The results reported in Table 2 confirm the positive intercept and negative slope co-

efficients consistent with our hypothesis. Both slope and intercept terms are statistically

significant, with a high R2. It appears that six-year time horizon has the best overall per-

formance, with an R2 exceeding .51. Figure 1 demonstrates the relationship through time

between the predicted values, λ̃, using the regression coefficient estimates, and the expected

values, E (λt), from eq. (3). As can be seen the model has tremendous explanatory power in

capturing the short-term variation in expected returns.

To interpret the results, using S&Pt/S&Pt−5 the coefficient estimates from eq. (5) suggest

a mean expected λ of .162. Using S&Pt/S&Pt−6 and S&Pt/S&Pt−5, t−6, the expected market

pricex of risk are .164 and .163, respectively. The quadratic results fusing the three measures

produce a mean λ of .155, .155, and .156. Interestingly, regardless of the dependent variable

chosen, the expected Sharpe ratio is around .16 even though there are significant differences

in model performance. Using these expected values, and multiplying by VIX, we can derive

estimates for the time-varying expected risk premia. A shown in Figure 2, the expected

risk-premia has varied from a high of 14.3% on 10/21/87 (2 days after the crash) to a low

of −1.8% on 4/11/00 (12 trading days after the S&P 500 high watermark of 1527.46). On

average the estimated expected risk premia over this period is 3.19%. Combined with the

short-term risk-free rate corresponds to a expected rate of return of 8.34%, which is 4.3%

less than the realized return on the S&P 500 calculated over the same period.9

Examining the maximum and minimum values for S&Pt/S&Pt−5, results in Sharpe ratios

of −.043 and .313. The −.043 negative value is an indication that at high perceived wealth

levels, investors are willing to accept negative equity risk premium, an apparent manifestation

of risk-seeking behavior. Such a phenomenon is not accommodated in our standard utility

functions: Standard utility functions permit investors to devote an increasing proportion

of their wealth to the risky asset as their wealth increases, but they do not give rise to

risk-seeking behavior. Of course, it may well be that, in practice, a sufficiently long run of

positive returns on the S&P does indeed give rise to seemingly risk-seeking behavior: Such

a negative equity risk premium may, in other words, constitute a sufficient condition for a

“bubble.”

9The realized returns were calculated using annualized daily return and dividends.
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4.3 Estimation of Two-Growth Rate Model

The previous estimation results were predicated on using only short-term interest and growth

rates to arrive at an expected market price of risk. It more likely that multiple rates are

used in deriving current prices, and is demonstrated in eq. (9). As outlined in section 3.2,

incorporating both a long- and short-term growth rate will change the calculation of the

expected market price of risk, but will not change the econometric specification. Thus, the

regression outlined in eq. (5) can be used to test the multiple growth rate specification.

Since there appears to be little difference in the results in using multiple definitions of

xt, all remaining estimation will use S&Pt/S&Pt−5, t−6 as the proxy for per capita wealth

level. The results of the regressions on the new dependent variable are shown in Table

3. Incorporating the long-term growth rate into the model provides about a 4% increase in

performance, with an inferred mean value for the expected market price of risk equal to .199.

This value is higher than the estimate from model 3.1, but not surprising given that long-

term growth rate is higher on average than the short-term rate. However, the small relative

performance improvement suggests that using multiple growth rates have little explanatory

power beyond using only one growth rate. This is demonstrated in Figure 2, where the

expected risk premium inferred from model 3.1 and model 3.2 exhibit almost identical time

variation.

4.4 Estimation of Two-Growth Rate, “Term Structure-Adjusted”

Model

By allowing for multiple growth rates, but using only a short-term risk-free rate, we were able

to isolate the impact of multiple growth rates on model performance. While the results are

interesting, the model is mispecified since a long-term growth rate should be accompanied

with a long-term risk-free rate. As shown in section 3.3, the resulting model incorporates

both the long- and short-term risk-free rate, but requires additional estimation.

The following regression will capture the weight placed on both the long (rL,t)- and

short-term (rS,t) risk-free rates

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt

=


λ0 + λ1xt + β

rL,t − rS,t

VIXt

+ et

λ0 + λ1xt + λ2x
2
t + β

rL,t − rS,t

VIXt

+ et

Estimating β will reveal the sensitivity to the term-premium investors incorporate within

their expectations. To estimate β, the following estimations will use two proxies for the
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long- and short-term rates. First, the 10-year rate and 1-year Treasury rates will be used as

the initial long- and short-term rate respectively. Second, the long-term rate will encompass

the 30-year rate up through 2002, and then 20-year rate after that, to capture additional

term-premium that is not contained in the 10-year note.

The estimation procedure requires two steps. First, the model’s first stage, outlined

in eq. (13), is estimated to capture the coefficient estimates for β. After that coefficient

is estimated, the second stage is estimated, where the dependent variable is adjusted by

β̂ (rL,t − rS,t) /VIXt as shown in eq. (12). The results of each estimation using both proxies

for the long- and short-term rates can be found in Table 4.

What is immediately obvious is the performance of the model when a term-structure

adjustment is incorporated. It is interesting to note that regardless of the proxy chosen for

the long-term rate, the coefficient on the term-structure spread is greater than one. This

suggests investors are extremely sensitive to the spread between long and short rates, with

higher spreads inducing greater required rates of return for equivalent levels of risk.

The second-stage results test the original model, but have adjusted the dependent vari-

able by accounting for the term-premium. While the model performance is moderate, the

coefficients on the wealth premium have maintained some explanatory power, sign direction,

and significance. The resulting expected market price of risk after controlling for the yield

spread suggests a mean value of .059, significantly less than the findings for the short-term

model. However, as shown in Figure 2, the expected risk-premium demonstrates substan-

tially less variation once the term-premium has been accounted for. This finding is entirely

intuitive: The long-term risk premium should indeed be relatively insensitive to short-term

fluctuations.

4.5 Incorporating Stochastic Volatility in the Estimation of a

Long-Term Expected Risk Premium

The final estimation accounts for the mean-reversion in volatilities. As such, all prior esti-

mations have used the current level of VIX for volatility. Estimating the model in section

3.4 can be done in two ways. It is possible to first estimate the mean reverting parameters

as given in Doran and Ronn (2005), and then use the resulting mean-reverting parameters

to find the market price of risk. However, given our model, it is possible to estimate both

parameters without a separate estimation. Given eq. (17) we have the first-stage regression

of the form of

Dt,0(1 + gS,t)

Pt

+ gL,t − r1t = a0 + a1 VIXt + a2 VIXt xt + a3xt + β̂ (rL,t − rS,t) + et
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where the coefficients are given by

a0 = λ0(1− w)
√

θ

a1 = λ0w

a2 = λ1w

a3 = λ1(1− w)
√

θ

Similar to the previous section, after solving for the coefficient on the term-premium, the

dependent variable is adjusted by β̂ (rL,t − rS,t), and the regression is re-run. In addition,

there is one non-linear constraint,
a1

a2

=
a0

a3

,

that must be imposed on both regressions. The results for both regressions using the two

proxies for the long- and short-term risk-free rates are shown in Table 5.

The parameter values are not directly comparable to the other models, but suggest a

fixed component to the long-run risk-premium of around 2.7%. The mean value for the risk-

premium is 1.2% given the mean value of xt and VIX of 1.89 and 21% respectively. As shown

in Figure 3, the model suggests that even at the highest wealth levels, the risk-premium never

falls below zero, reaching a minimum value on 3/28/2000 of 0.03%. This is in sharp contrast

to the short-term findings, which found negative short-term expected Sharpe ratios. These

difference highlight why there are bubbles and troughs over short-term intervals, while over

the long-term, the market produces positive expected risk premiums.

In terms of performance, the findings for the first-stage regression are similar as those for

Model 3.3. However, there is vast improvement in the second-stage regression suggesting the

importance of accounting for mean-reversion in implied volatility. While it is not possible to

infer the true value of w, a back-of-the-envelope calculation assuming a mean-value for long-

run volatility of 21% and rL = r30, suggests a value of less than 10% on current volatility.10

This is quite surprising, as it suggests that investors have a long-term volatility perspective

and are relatively insensitive to current values of volatility.11 In this light, our ability to

explain those relatively-minor changes in the long-term risk premium is of particular interest.

This is highlighted in Figure 2. By controlling for the mean-reverting nature of VIX,

we have reduced the variation in the expected risk-premia beyond model 3.3, demonstrating

an almost permanent component, which only fluctuates moderately with perceived levels of

10The inferred weight is calculated as w =
√

θ
a0/a1+

√
θ
.

11This may, in part, explain why it has been difficult to attain a consensus on the corre-
lation between volatility and the market risk premium.
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wealth and contemporaneous values of VIX. Figure 4 decomposes the total rate of return

implied by model 3.4 into two components, the blended risk-free rate and the expected risk-

premium. As can be seen, the expected risk premium is a small component of the rate

of return, and demonstrates relatively little time-variation. By comparison, the blended

risk-free rate, which includes the short-term rate plus term-premium as estimated by the

unconstrained regression, captures most of the time-variation. As several authors have noted,

there was a general concern that the risk-premium was declining over recent years. However,

the evidence here seems to suggest the contrary. Since the tech-bubble burst in 2000, the

expected risk premium is on the rise; what has fallen is the spread between long and short

term treasuries.

4.6 Realized Returns

We now wished to test all four models on realized returns. Given the current state of the

literature on the equity premium puzzle, our expectation was that each model should perform

quite poorly, which would be consistent with other empirical findings and the notion of

unpredictability of asset returns. In addition, we wanted to demonstrate the realized Sharpe

ratio was higher than the expected, confirming the findings of Mehra and Prescott (1985).

The realized returns for day t were calculated in two ways:

Rm
t ≡

(
S&Pt+1/12 + Dt+1/12

S&Pt

)12

− 1

Ra
t ≡

(
S&Pt+1 + Dt+1

S&Pt

)
− 1

where Rm
t is a monthly return and Ra

t is an annual return. S&P t+1/12 is the level of the S&P

500 one month ahead and Dt+1/12 is dividend payout divided by 12. We have calculated one

month returns since VIX is a one-month estimate of implied volatility. One year returns

are also calculated since typical holding periods are longer than one-month, and one month

variation may incorporate short-term shocks outside of our current model. The annualized

value of Rm
t in the one-month case is then adjusted by the annualized risk-free rate and VIX

to create a realized market price of risk:

λt =
Rt − rt

VIXt

This value is then regressed on the same independent variables as in the prior section to

make the interpretation across realized versus expected market prices of risk comparable.
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The results and estimation methodology reported in Tables (6-7) are analogous to those

reported in sections 4.2-4.5, but using realized returns as the dependent variable.

Regardless of holding period, in each model, the R2 is lower, except for the constrained

regression of model 3.3 using 1-year holding period returns. This is interesting as it suggests

there is limited explanatory power in the term-premium as compared to the expected results.

While the variability in the expected Sharpe ratio is a function of the implied volatility,

growth rate, risk-free rate, and dividend yield, the variability in realized Sharpe ratio appears

unrelated to these factors. More appropriately, these results seem to suggest that there are

additional factors that have yet been identified or are a result of random error.

The coefficient estimates from the regression imply a realized Sharpe ratio of .41 for each

of the three models and is consistent with the simple historical calculation. The finding for

the realized Sharpe ratio is almost 2.5 times greater than the expected Sharpe ratio over the

same period. This results in a difference in the risk premia of roughly 4%. This is less that

the Mehra and Prescott (1985) finding, where their reported difference between the realized

and expected premium was roughly 6%.12 The differences in expected, model predicted

(using Model 3.1), and realized returns are shown in Table 8.

Annualizing the monthly returns by a factor of 252/22, we observe an annualized differ-

ence between expected versus realized return of about 4%. The regression’s predicted differ-

ence is 4.4%. What is most revealing is how the results here again highlight the difference

in predicting expected versus realized returns. There is little to no difference in the mean,

standard deviation, minimum, and maximum values in the predicted and actual expected

returns, while there are drastic differences in the predicted and actual realized returns.13

This suggests that the model effectively captures the ex-ante performance in the market,

but reveals no information on ex-post returns. Needless to say, this result seems consistent

with market efficiency, as there is a little to no relationship between ex-ante forecasting, and

ex-post results. The question remains to whether this inability to capture realized returns is

a function of model imperfection or random error. If it is the latter, this reaffirms the notion

of unpredictability of asset returns.

12This may be a direct result of the 2000–2004 period, where the average difference is
actually negative and is not included in Mehra (2003).

13The rolling 1-year realized returns report a similar mean, but an annualized standard
deviation of 16.2%, a minimum value of −32.6%, and a maximum of 52.6%.
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5 Modeling the Measurement Error in gt and VIX

In using the data in this fashion, it is possible to introduce heteroscedasticity since there is

the potential measurement error in the infrequently-observed growth rate. To address this

problem, we adjust for the measurement error as shown in Appendix A and re-run equations

(5) on the prior dependent variables. The resulting specification eliminates the intercept

term (by dividing through by σ̂t, ε, and results in a homoscedastic regression. The results

of this regression for both expected and realized Sharpe ratios using all three measures of

investor sentiment can be found in Table 9.

The findings are similar to the findings in the prior tables. The inferred Sharpe ratios

for the expected and realized returns are around .14 and .41, respectively. In addition, the

coefficients estimated using the heteroscedasticity adjustment are essentially the same as

those in the standard OLS regression. We conclude that measurement error in the variables

is of little concern.

6 Conclusion

This paper presented a parsimonious, easily-implementable model for the estimation of the

short- and long-term expected rates of return on the S&P 500 stock market Index. Using as

our primary variable of interest the Market Price of Risk, or Sharpe Ratio, of the S&P 500

Index, we used as predictive variables the risk-free rate of interest, the economy’s growth

rate estimate, and the option market’s implied volatility on the S&P 500 Index. The model

explicitly accounted for an assumed increasing relative risk aversion by incorporating and

estimating the impact of past S&P 500 returns.

Conditioning on four variables — the risk-free rate of interest rt, the slope of the yield

curve r30, t − r1, t, the implied volatility VIXt on the Index, and the realized S&P 500 Index

rate of return over the past five–six years S&P 500t/S&P 500t−5,t−6 — the model generated

expected rates of return µt given by expressions of the form

µt =



r1t +

(
0.46− 0.162

S&P 500t

S&P 500t−5,t−6

)
VIXt for a one-year horizon

r1t + 1.158 (r30,t − r1t) + 0.0257 + 0.0094 VIXt

− 0.00282 VIXt
S&P 500t

S&P 500t−5,t−6

− .00772
S&P 500t

S&P 500t−5,t−6

for the long-term

(18)
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In examining the implications of (18) for short- and long-term expected rates of return,

we find that:

1. Short-term expected rates of return are quite volatile, due to changes in VIX, the term

structure of interest rates {r1t, r30,t} and the accumulated wealth factor

S&P 500t/ S&P 500t−5,t−6

2. The behavior of the short-term mut presents an interesting “history” of the past twenty

years, with the risk premium peaking immediately subsequent to the 1987 stock market

crash and reaching a low point — a negative risk premium just as the stock market

reached its recent March 2000 high-water, possibly “bubble,” mark

3. The long-term expected risk premium is remarkably stable, as indeed befits a long-term

predictor of the excess return on the U. S. stock market: Any transitory effects would

be expected to dissipate in the long-term.

4. Whereas the long-term risk premium unsurprisingly reached a low point in the March

– April 2000 time period, it remained slightly positive and never fell into negative

territory

With respect to the relationship between expected and realized returns, we find the

work Fama and French (2002), “The Equity Premium,” particularly relevant to our results.

Quoting from their Abstract:

“We estimate the equity premium using dividend and earnings growth rates to

measure the expected rate of capital gain. Our estimates for 1951 to 2000, 2.55%

and 4.32%, are much lower than the equity premium produced by the average

stock return, 7.43%. Our evidence suggests that high average return for 1951

to 2000 is due to a decline in discount rates that produces a large unexpected

capital gain. Our main conclusion is that the average stock return of the last

half-century is a lot higher than expected.”

Our work has used prospective data on growth rates and volatility for the time period

available, Jan. 1986 to Dec. 2004, with a parsimonious expected-return model, and come to

starkingly similar results.

In conclusion, this suggests to us two qualitative results:

1. A negative implied equity risk premium, such as manifested themselves (in our data

period) in Oct. 1987 and the 2000 period are strongly suggestive of “irrational exuber-

ance” giving rise to unsustainably high asset prices.
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2. Overall, in this period Jan. 1986 to Dec. 2004 there were positive shocks to the system

that resulted in realized returns exceeding their expected values. While it is tempting

to suggest two of these shocks were the “peace dividend” following 1991 and the produc-

tivity shocks induced by improved computer technology in the ’90’s, such attribution

must at this time remain speculative.
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A Modeling the Measurement Error in gt and VIX

1. Recall the basic equation we are examining is:

D0t (1 + gt)

Pt

+ gt = rt + λtσt. (19)

xt is our wealth-relative variable, e.g., xt = S&Pt / S&Pt−6 or xt = S&Pt / S&Pt−5 .

Now, combine (19) with

λt = λ0 + λ1xt

If we rearrange (19), we obtain

1

σt

(
D0t

Pt

+ 1
)

gt +
D0t

σtPt

− rt

σt

= λ0 + λ1xt (20)

2. If realized vol at date t is σt, then for a negative market price of vol risk, we have

VIXt > σt. Assume then that

σt = a VIXt eV

for some a < 1 and an error term eV satisfying E (ln eV ) = 0

3. Because of the quarterly (hence less than monthly) observation frequency for the

growth rate gt, assume the growth rate is measured with error, resulting in the substi-

tution in eq. (20) of gt with gt + eg

4. Substituting these two expressions into (20) results in:

1

a VIXt eV

(
D0t

Pt

+ 1
)

(gt + eg) +
D0t

a VIXt eV Pt

− rt

a VIXt eV

= λ0 + λ1xt + et,

where et is the regression’s error term. Now, multiplying through by aeV results in:

1

VIXt

(
D0t

Pt

+ 1
)

(gt + eg) +
D0t

VIXt Pt

− rt

VIXt

= λ0aeV + λ1axteV + aeV et

Transpose the eg term to the RHS:

1

VIXt

(
D0t

Pt

+ 1
)

gt +
D0t

VIXt Pt

− rt

VIXt

= λ0aeV + λ1axteV + aeV et

− 1

VIXt

(
D0t

Pt

+ 1
)

eg. (21)
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Clearly, regression (21) is subject to heteroscedasticity, since (with the relevant statis-

tical assumptions)

Var [ λ0aeV + λ1axteV + aeV et −
1

VIXt

(
D0t

Pt

+ 1
)

eg ] =

=
(
λ2

0a
2 + λ2

1a
2x2

t

)
σ2

V + Σ2
1 +

1

VIX2
t

(
D0t

Pt

+ 1
)2

σ2
g

≡ Σ2 + λ2
1a

2x2
t σ

2
V +

1

VIX2
t

(
D0t

Pt

+ 1
)2

σ2
g ,

which shows the heteroscedasticity induced by xt and yt ≡
1

VIXt

(
D0t

Pt

+ 1
)

.

5. Adjusting for this heteroscedasticity is not simple, since it has a constant Σ as well as

time-t dependent variables xt and yt :

The solution we implement, albeit one that is cumbersome, is the following:

(a) Estimate σg from a time-series of gt’s: σ̂g = Std. Dev. (gt)

(b) Estimate σV from a regression of ln (σt/VIXt) on a constant, which simultaneously

produce an estimate of â as well as σ̂V

(c) Obtain an estimate of regression (21) slope coefficient λ̂1a by running an OLS

version of the regression (21)

(d) By (initially) setting Σ ≡ 0, obtain an estimate of the date t regression error (22)

σ̂t by substituting σ̂g, λ̂1a and σ̂V

(e) Deflate both LHS and RHS of (21) by this estimate of σ̂t, then run the regression

(21)

(f) Calculate the std. dev. of the error term in that regression εt, σ̂ε. On average, we

would expect that

σ̂2
ε = Σ2 +

1

T

[∑
t

λ2
1a

2x2
t σ

2
V +

1

VIX2
t

(
D0t

Pt

+ 1
)2

σ2
g

]
. (22)

(g) In (22), if Σ ≥ 0, substitute Σ into (21), deflate by the new σ̂t and run regression

(21) one more time
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Table 1: Summary Statistics

Table 1 reports the summary statistics of the variables from January 1986 through December
2004

Variable Obs Mean Stdev Min Max

Dividend Yield 4795 2.4% 0.8% 1.1% 4.0%
VIX 4795 20.6% 7.6% 9.3% 150.2%

Treasury Yield 1-Year 4795 5.1% 2.1% 0.9% 9.9%
10-Year 4795 6.5% 1.5% 3.1% 10.2%
30-Year 4795 6.8% 1.5% 3.1% 10.3%

Growth Rate
1-year 4795 5.6% 1.0% 2.7% 7.3%

10-year 3679 5.9% 1.0% 5.0% 6.7%

S&Pt

S&Pt−5

4795 1.79 0.55 0.76 3.21

S&Pt

S&Pt−6

4795 2.01 0.54 0.92 3.43

S&Pt

S&Pt−5, t−6

4795 1.89 0.54 0.86 3.30
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Table 2: Estimation of Model 3.1: One-Growth Rate, Short-Term Interest Rate, VIX Model

Table 2 reports the parameter estimates of the OLS regression of eq (5) shown below. The
market price of risk is inferred from the dividend-growth model specified in eq. (1) and is
regressed on xt, three proxies of “perceived wealth”: (1) S&Pt/S&Pt−5, (2) S&Pt/S&Pt−6,
and (3) S&Pt/S&Pt−5, t−6. Each panel contains linear and quadratic regressions. t-stats are
listed in parentheses.

Linear Relationship:
(D0t/Pt) (1 + g1t) + g1t − r1t

VIXt

= λ0 + λ1xt + et

Quadratic Relationship:
(D0t/Pt) (1 + g1t) + g1t − r1t

VIXt

= λ0 + λ1xt + λ2x
2
t + et

Model 1: xt =
S&Pt

S&Pt−5

Model 2: xt =
S&Pt

S&Pt−6

Model 3: xt =
S&Pt

S&Pt−5, t−6

xt −0.146 −0.254 −0.169 −0.293 −0.162 −0.253
(69.49)** (19.98)** (89.38)** (24.77)** (84.36)** (22.28)**

x2
t 0.029 0.03 0.023

(8.80)** (11.13)** (8.44)**

λ0 0.424 0.517 0.504 0.623 0.469 0.552
(96.09)** (45.40)** (106.82)** (50.62)** (104.36)** (50.11)**

Obs 4795 4795 4795 4795 4795 4795
R2 40.2% 41.0% 51.4% 51.7% 47.1% 48.2%

Robust t-statistics in parentheses
* significant at 5%; ** significant at 1%
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Table 3: Estimation of Model 3.2: Two-Growth Rate, Short-term Interest Rate, VIX Model

Table 3 reports the parameter estimates of the OLS estimation of Model 3.2 given in eq. (9).
The dependent variable is the market price of risk computed using both one-year g1t and
ten-year g10,t growth rates. The estimation period is from June 1990 through December

2004. xt =
S&Pt

S&Pt−5, t−6

. t-stats are listed in parentheses.

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt

= λ0 + λ1xt + et

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt

= λ0 + λ1xt + λ2x
2
t + et

Linear Model Quadratic Model

xt −0.162 −0.111
(93.24)** (9.08)**

x2
t −0.013

(4.32)**

λ0 0.506 0.46
(117.81)** (41.07)**

Obs 3679 3679
R2 51.27% 51.43%

Robust t-statistics in parentheses
* significant at 5%; ** significant at 1%
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Table 4: Estimation of Model 3.3: Two-Growth Rate, Blended Interest Rates, VIX Model

Table 4 reports the parameter estimates of the two-stage estimation of Model 3.3 given in eqs. (12-
13). In the first-stage regression, the dependent variable is adjusted by −β̂ (rL − r1) /VIXt. The de-
pendent variable is the two-growth rate market price of risk, [(D0t/Pt) (1 + g1t) + g10,t − r1t] /VIXt.
The estimation period is from June 1990 through December 2004. xt = S&Pt/S&Pt−5, t−6. t-stats
are listed in parentheses.
First Stage:

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt
= λ0 + λ1xt + β

rL,t − r1t

VIXt
+ et

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt
= λ0 + λ1xt + λ2x

2
t + β

rL,t − r1t

VIXt
+ et

Second Stage:

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt
− β̂

rL,t − r1t

VIXt
= λ0 + λ1xt + et

(D0t/Pt) (1 + g1t) + g10,t − r1t

VIXt
− β̂

rL,t − r1t

VIXt
= λ0 + λ1xt + λ2x

2
t + et

As explained in the text, the R2 for the first-stage is not meaningful, but it is for the second-stage’s
bold-faced values.

rL = r10 and rS = r1 rL = r30 and rS = r1
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

β 1.654 1.659 1.449 1.448
(96.33)** (96.58)** (124.76)** (126.46)**

xt −0.032 −0.032 −0.059 −0.059 −0.024 −0.024 −0.010 −0.010
(20.19)** (36.24)** (8.83)** (9.01)** (18.11)** (31.51)** (1.76) (1.79)

x2
t 0.007 0.007 −0.004 −0.004

(4.37)** (4.28)** (2.62)** (2.58)**

λ0 0.121 0.119 0.143 0.143 0.081 0.081 0.069 0.069
(27.68)** (59.46)** (19.39)** (23.70)** (22.16)** (48.54)** (10.76)** (13.17)**

Obs 3679 3679 3679 3679 3679 3679 3679 3679
R2 89.7% 16.1% 89.7% 16.5% 93.0% 13.9% 93.0% 14.1%

Robust t-statistics in parentheses
* significant at 5%; ** significant at 1%
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Table 5: Estimation of Model 3.4: Two-Growth Rate, Blended Interest Rates, Blended
Volatility Model

Table 5 reports the parameter estimates of the first- and second-stage linear estimation with
non-linear constraints of Model 3.4 given in eq. (17). For both regressions the condition that
a1/a2 = a0/a3 is imposed. Using the first-stage estimate β̂, in the second-stage regression the
dependent variable is adjusted by −β̂ (rL − rS). The dependent variable is the risk premium
(D0t/Pt) (1 + g1t) + g10,t − r1t. The coefficients are equal to: a0 = λ0(1 − w)σ, a1 = λ0w, a2 =
λ1w, a3 = λ1 (1− w) σ. The estimation period is from June 1990 through December 2004. t-stats
are listed in parentheses.
First Stage

D0t (1 + g1t)
Pt

+ g10,t − r1t = a0 + a1 VIXt + a2 VIXt xt + a3xt + β (rL − rS) + et

Second Stage

D0t (1 + g1t)
Pt

+ g10,t − r1t − β̂ (rL − rS) = a0 + a1 VIXt + a2 VIXt xt + a3xt + et

rL = r10 and rS = r1 rL = r30 and rS = r1

1st Stage 2nd Stage 1st Stage 2nd Stage

λ0(1− w)θ 0.02896 0.02891 0.02571 0.02573
(35.66)** (49.26)** (35.75)** (48.49)**

λ0w 0.02899 0.02899 0.00939 0.0094
(10.16)** (10.16)** (3.69)** (3.70)**

β 1.26908 1.15754
(89.39)** (111.74)**

λ1w −0.00814 −0.00814 −0.00282 −0.00282
(9.98)** (9.99)** (3.67)** (3.69)**

λ1(1− w)θ −0.00813 −0.00814 −0.00771 −0.00772
(30.54)** (42.01)** (31.83)** (41.49)**

Obs 3679 3679 3679 3679
R2 90.62% 49.76% 93.23% 49.80%

Robust t-statistics in parentheses
* significant at 5%; ** significant at 1%
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Table 6: Estimation of Realized Market Price of Risk using a 30-day Window

Table 6 reports the analogous parameter estimates using realized returns for all four models.
The realized returns were calculated over a 30 day window, and the market price of risk was
inferred using the implied volatility from VIX and the 1-year Treasury Bill. The realized
market price of risk was then regressed on xt ≡ S&Pt/S&Pt−5, t−6. All independent variables
are calculated in the same fashion as those in the expected market price of risk regressions.
For the calculation of β, rL = r10. t-stats are listed in parentheses.[(

S&Pt+1/12 + Dt+1/12

)/
S&Pt

]12
− 1− r1t

VIXt

= λ0 + λ1xt + et[(
S&Pt+1/12 + Dt+1/12

)/
S&Pt

]12
− 1− r1t

VIXt

= λ0 + λ1xt + β
rLt − r1t

VIXt

+ et(
S&Pt+1/12 + Dt+1/12

S&Pt

)12

− 1− r1t = a0 + a1 VIXt + a2 VIXt xt + a3xt + β (rLt − r1t) + et

Model 3.1 & 3.2 Model 3.3 Model 3.4
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

xt -0.627 0.66 -0.95 -0.95 -0.433 -0.432
(9.24)** (2.01)* (11.65)** (15.19)** (1.23) (1.23)

x2
t -0.326 -0.133 -0.133

(3.90)** (1.49) (1.51)

λ0 1.609 0.436 2.694 2.693 2.246 2.244
(12.63)** (1.4) (13.30)** (22.50)** (6.55)** (6.81)**

λ0(1− w)σ 0.33 0.335
(4.66)** (5.67)**

λ0w 0.761 0.76
(2.63)** (2.64)**

λ1w -0.256 -0.255
(2.60)** (2.61)**

λ1(1− w)σ -0.111 -0.112
(4.51)** (5.36)**

β -6.171 -6.269 -5.449
(9.33)** (9.34)** (6.71)**

Obs 4775 4775 3657 3657 3657 3657 3657 3560
R2 1.88% 2.14% 3.05% 5.47% 3.11% 5.60% 2.15% 3.83%

Robust t-statistics in parentheses
* significant at 5%; ** significant at 1%
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Table 7: Estimation of Realized Market Price of Risk using 1-year Window

Table 7 reports the analogous parameter estimates using realized returns for all four models.
The realized returns were calculated over a 1-year window, and the market price of risk was
inferred using the implied volatility from VIX and the 1-year Treasury Bill. The realized
market price of risk was then regressed on xt = S&Pt/S&Pt−5, t−6. All independent variables
are calculated in the same fashion as those in the expected market price of risk regression.
For the calculation of β, rL = r10. t-stats are listed in parenthesis.

(S&Pt+1 + D) /S&Pt − 1− r1t

VIXt

= λ0 + λ1xt + et

(S&Pt+1 + D) /S&Pt − 1− r1t

VIXt

= λ0 + λ1xt + β
rL,t − r1t

VIXt

+ et

S&Pt+1 + D

S&Pt

− 1− r1t = a0 + a1 VIXt + a2 VIXt xt + a3xt + β (rL − rS) + et

Model 3.1 & 3.2 Model 3.3 Model 3.4
1st Stage 2nd Stage 1st Stage 2nd Stage 1st Stage 2nd Stage

xt −0.61 0.96 −0.90 −0.90 1.05 1.05
(33.61)** (11.48)** (35.43)** (46.47)** (11.17)** (11.04)**

x2
t −0.39 −0.49 −0.49

(18.26)** (19.62)** (19.87)**

λ0 1.59 0.13 2.59 2.59 0.84 0.84
(43.29)** (1.70) (40.06)** (68.64)** (9.88)** (10.43)**

λ0(1− w)σ 0.52 0.53
(23.92)** (29.62)**

λ0w 0.04 0.04
(0.52) (0.54)

λ1w −0.02 −0.02
(0.52) (0.54)

λ1(1− w)σ −0.18 −0.18
(22.39)** (26.58)**

β −5.01 −5.24 −5.61
(24.70)** (26.62)** (23.90)**

Obs 4678 4678 3560 3560 3560 3560 3560 3560
R2 14.79% 17.79% 19.73% 31.29% 24.70% 36.39% 22.77% 37.35%

Robust t-statistics in parentheses
* significant at 5%; ** significant at 1%
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Table 8: Realized versus Expected Returns

Table 8 reports the realized and expected returns over the time period. The realized returns,

Rt, are calculated as the annualized 30-day return, Rm
t =

[(
S&Pt+1/12 + Dt+1/12

)/
S&Pt

]12
−

1. The −327.2% annualized loss was over the 9/23/87-10/26/87 period, where the index fell
28.5%, from 319.72 to 227.42. The expected returns, E (Rt) are the model-dependent returns
derived from the dividend-growth model (D0t/Pt) (1 + g1t)+ g1t− r1t as given in Section 3.1.

The estimated realized returns, R̃t, and estimated expected returns, E
(
R̃t

)
, are the predicted

values derived from coefficient estimates from the regression of eq. (5).

Variable Obs Mean SD Min MAX

Rt 4795 11.91% 53.08% −327.2% 238.9%

R̃t 4795 12.39% 6.83% −8.3% 40.6%

E (Rt) 4795 7.97% 1.68% 4.0% 11.4%

E
(
R̃t

)
4795 7.96% 2.08% 4.5% 20.2%
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Table 9: Estimation of Realized and Expected Market Price of Risk with Heteroscedasticity
Correction

Table 9 reports the parameter estimates of the heteroscedasticity corrected OLS estimation of
eq. (21) using realized and expected returns. The algorithm for correcting the measurement
error in the growth rate, gt, can be found in Appendix A. The results for all three proxies
of wealth are reported. There is no significant statistical difference between these estimates,
and those found in Table 2. The results for quadratic regression are available upon request.
t-stats are listed in parentheses.

E
(
λ̂t

)
σ̂t,ε

≡ [(D0t/Pt) (1 + g1t) + g1t − r1t] /VIXt

σ̂t,ε

= λ0
1

σ̂t,ε

+ λ1
xt

σ̂t,ε

+ et

λt

σ̂t,ε

≡ [(S&Pt+1 + D) /S&Pt − 1− r1t] /VIXt

σ̂t,ε

= λ0
1

σ̂t,ε

+ λ1
xt

σ̂t,ε

+ et

Model 1: xt =
S&Pt

S&Pt−5

Model 2: xt =
S&Pt

S&Pt−6

Model 3: xt =
S&Pt

S&Pt−5, t−6

E
(
λ̂t

)
λt E

(
λ̂t

)
λt E

(
λ̂t

)
λt

λ1 −0.128 −0.373 −0.143 −0.723 −0.139 −0.634
(64.23)** (5.51)** (77.58)** (10.52)** (73.83)** (9.27)**

λ0 0.373 1.082 0.432 1.871 0.406 1.617
(98.54)** (8.49)** (110.84)** (13.02)** (108.25)** (11.95)**

Obs 4795 4795 4795 4795 4795 4795
R2 81.2% 3.23% 83.7% 4.72% 82.9% 4.04%

Absolute t-statistics in parentheses
* significant at 5%; ** significant at 1%
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