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The question of whether analysts learn from each other or merely herd with each other 

has been the focal point of recent debates in the extant literature on analysts’ forecasting.  While 

proponents of herding and advocates of learning starkly disagree on whether and why analysts 

herd or learn, both lines of inquiry share one central theme: herders and learners, for whatever 

the reason, do not post unbiased estimates.  Proponents of the herding theory, such as Scharfstein 

and Stein (1990), Trueman (1994), and Hong, Kubik, and Solomon (2000), argue that analysts, 

particularly less competent ones, simply herd with each other for reasons such as reputation or 

career concerns, to avoid making uncommon forecast errors and being singled out.  Hence, these 

analysts posting only slightly biased estimates, making their forecasts more similar to the 

consensus, and simply neglecting their own beliefs about the firm.  Advocates of the learning 

theory, such as Mikhail, Walther and Willis (1997), Clement (1999), and Bernhardt, Campello, 

and Kusoati (2004), posit that differentiating oneself from the crowd is the most important way a 

competent analyst can guarantee herself a long, successful career.  A competent analyst then 

finds posting a largely biased estimate that is one substantially different from the consensus a 

better signal of her superior ability.  In short, as Lim (2001) asserts, “the unbiasedness of 

forecasts need not mean they are best or most accurate.” 

 Therein, we believe, lays the answer to the debate.  Whether an analyst herds with or 

learns from the crowd seems merely to be a question of how the analyst should construct an 

optimal bias1; one that conforms to her objectives and helps to protect or promote her career.  

Such a bias, however, should account for an analyst’s own information about the firm, as well as 

other relevant information, be it from public sources, private channels or other forecasters.  In 

this paper, we pursue this question both theoretically and empirically: for an analyst with a given 
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level of experience and a unique private source who faces other analysts with different degrees 

of expertise and possibly their own private channels, what is the optimal bias?   

We first model the interaction between two types of proper Bayesian analysts with 

different levels of expertise.  These analysts have the ability to improve upon their common 

knowledge through accessing potentially different private channels and pursue a universal 

objective of making the least erroneous forecast.  Such a construct permits the stylized features 

inherent in both the herding and learning literatures without making any supposition as to how an 

analyst should behave.2  This framework allows us to combine elements from typical herding 

studies, which allow for analysts to update their beliefs [see, e.g., Trueman (1994) who allows 

Bayesian analyst to adjust their forecast to reflect their beliefs about accuracy of their own and 

other analysts’ signals]3.   

 Our theoretical analysis shows that, even in the absence of complex objectives such as 

career aspirations or concerns, analysts follow either herding or learning strategies based on their 

levels of experience and expertise,  We further show that when analysts can gain knowledge 

about the firm via tapping into private channels or reading into the consensus beliefs, the link 

between expertise and the degree of herding/learning is a direct result of information processing, 

and not necessarily an outcome of career aspirations or concerns.  When an analyst observes the 

biased forecast of another analyst, particularly that of a more experienced analyst, she gains 

enough insight that she need not post a large bias,  even though the precision of her private signal 

can improve with a positive bias.  Put in a different way, if one analyst pays for the private 

information, others may not need to do the same.  Not surprisingly, as the expertise of an analyst 

improves, she finds previously reported estimates less informative.  Similarly, when the degree 

of informational asymmetry between the firm and the analyst declines, an average, novice 
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analyst finds a smaller bias to be optimal.  However, faced with lower asymmetry of information 

simply because the existing forecasts by less competent analysts do not contain much hidden 

information, we find that seasoned analysts post larger biases.  This is particularly the case when 

forecasts reflect information about an already transparent firm. An interesting implication of the 

model is the extent to which an analyst’s expertise and informational asymmetry plays a role in 

determining the analyst’s bias is directly impacted by how dispersed are the common and 

idiosyncratic signals of all analysts, as well as the extent of their correlation with each other.  

This highlights the influence and connectedness of both common and private signals, as well as 

the quality of private information channels and analysts’ expertise, on how analysts construct and 

report their earnings forecast.   

 While elements of our theoretical predictions have already been shown by the literature4, 

there does not exist a study that has analyzed whether an analyst’s forecast error changes in the 

presence of a prior forecast, depending upon relative expertise and how earnings individually and 

industry-wide are connected.5  Since an essential finding of our model is that the comparative 

expertise of analysts influences their forecast and the updates thereof, we delve further into said 

learning/herding to discern how learning changes when the information environment changes.  

One such change in the information environment is when a firm is included in the S&P 500.  

There is an increase in the number of analysts which follow a firm upon its inclusion into the 

S&P 500, thereby offering a change in the information environment which may facilitate 

learning across analysts as well as competition among them.  Indeed, Denis, McConnell, 

Ovtchinnikov and Yu (2003) show that upon inclusion to S&P500 index, the information 

environment, as measured by analysts’ earnings forecast errors, improves.  Since, as noted by 

index sponsors, the index inclusion is merely a cosmetic change for the firm, we posit that an 



 

 5

event study of index inclusion would allow us to identify any firm-specific informational change 

that may impact our analysis.  Utilizing the data that exists for companies before and after 

inclusion onto the S&P 500, we thus examine the learning environment surrounding the 

inclusion of the S&P500 index. 

Our empirical evidence supports the analytical propositions set forth by our model.6  As 

more analysts, or ‘new followers,’ begin covering these large firms, the opportunity for learning 

increases, both from experience and from each other.7 This additional information provided to 

new followers offers them the possibility of higher accuracy depending on the relative quality of 

the signals they receive, their ability to recognize said worth and how dependent the analysts are 

upon that signal for information.  Learning seems to be heavily dependent on the experience 

analysts have as well as their dependence on private channels of information.8  For instance, we 

find that new followers, who are less experienced, post smaller biased forecasts, while existing, 

seasoned followers post larger positively biased estimates.  Since both new and existing 

followers manage to reduce their forecasting error significantly, the disparity between biases 

posted by existing and new followers indicates first that only existing analysts can viably induce 

a firm to reveal more information by appealing to the management.  Analysts with little to no 

experience then greatly benefit from the experience of the existing forecasting pool, diminishing 

the marginal value of their own experience.  This disparity between existing and new analysts’ 

experiences seems also to be influential with regard to the impact of the information asymmetry 

on forecasts.  For instance, existing (new) analysts’ degree of information asymmetry affects the 

forecast bias significantly positively (negatively).  

 Besides extending and bridging analyst learning and herding literatures, the implications 

of our research contribute significantly to a number of current lively debates.  First and foremost, 
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our analysis sheds light on why analyst forecast error decreases upon exogenous changes in 

information environment, such as inclusion in S&P 500 index, (Harris and Gurel (1986), Lynch 

and Mendenhal (1997)).  We show analytically that, as contended by Denis, McConnell, 

Ovtchinnikov and Yu (2003), an improvement in the overall earnings quality (i.e., less dispersed 

earnings) would lead to lower bias and forecast errors.  However, we show that interactions 

among analysts can additionally influence the individual and collective knowledge of analysts 

about earnings.  With better earnings characteristics, both old and new analysts find the smaller 

biases needed to discern private information.  As such, less seasoned analysts find even less 

benefit in ascertaining information via private channels by posting large biases.  Given the 

uncertainty of earnings a priori, inexperienced analysts find advantage in learning from the 

forecasts of their predecessors rather than pursuing private channels aggressively.  This 

complementarity between earnings dispersion and the efficacy of analysts cross learning 

magnifies the impact of information enhancement on earnings forecasting.  Our empirical 

examination further confirms that, even after controlling for the possible impact of more 

information generation by the firm, analysts’ experience (as measured by the quarters following 

the firm or similar firms) and expertise (as measured by the information asymmetry) 

significantly affect the observed enhancement of the forecast error impact of index inclusion.  

This highlights the import of analysts’ interaction in the development of both individual and 

collective beliefs about the firm’s prospects. 

 Second, our analysis directly contributes to the recent debate on whether abundance and 

transparency in firm disclosure hinders information production. In light of recent regulatory 

developments, particularly the Regulation Fair Disclosure (Reg. FD) that requires firms to reveal 

any private communication with analysts immediately to public, a recent strand of academic 
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research has surged to study whether an increase in financial reporting affects the firm’s 

information environment.  Recent evidence on the effects of Reg. FD [see, e.g., Baily, Li, Mao, 

and Zhong (2003)] shows that in contrast to earlier findings, “forecast dispersion increase[d] 

significantly … [and] forecasting earnings beyond the current quarter has become more difficult 

after the imposition of Reg. FD”.  Our theoretical analysis is related intimately to this issue and 

shows exactly how even in the absence of more firm disclosure, mere analyst interaction and 

cross-learning among seasoned and less experienced analysts can improve the accuracy of 

forecasts.  Since the efficacy of privately disseminated information to an analyst is manifested in 

the analyst’s forecast error (Lim (2001)), each analyst’s forecast error reveals privately obtained 

information.  The value and impact of this implicit private information, however, is a function of 

differences in the expertise of analysts.  We show that forecast error filtered through more 

seasoned and highly competent analysts affects the accuracy of consensus estimates as much as a 

firm’s increases in accuracy.  Indeed, as Baily et al (2003) suggest, if out of fear of prosecution, 

firms are forced to produce unrelated raw data with no or little contextual value, the role of 

analysts in processing information can be hindered severely.  Our empirical evidence show that 

Reg. FD mostly benefits existing analyst as shown by the significant negative impact of Reg. FD 

dummy on both their bias and forecast error.  The new analyst, however, gains no significant 

benefit from firms producing more information.  Reg. FD has no marginal impact on the bias of 

new analyst, but makes their error worse.    

 The rest of the paper proceeds as follows.  Section I describes in detail the model and its 

comparative statics used in our examination. Section II explains the empirical methodology and 

describes the data. Section III reports the results of our empirical examination of the competitive 

influences on analyst estimation.  The paper concludes with section IV.  
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I.  Model 

  In this section, we model analysts’ earnings forecasting utilizing two components of 

earnings information, common and idiosyncratic, with some uncertainty about each component.  

We follow recent studies whereby earnings forecast accuracy is assumed to reflect market wide 

and analyst-specific components [see, e.g., Lim (2001) and Yao and Liu (2005)].  In doing so, 

we also assume like Lim (2001) that the idiosyncratic component directly relates to the private 

information that analysts can obtain from the firm by posting optimistic view of the firms 

prospect.9  We differ from these studies in that our prototypical analyst also observes a 

previously posted forecast.  As such, she can learn about both common and idiosyncratic 

components of earnings by incorporating previously revealed information.  Since we assume 

analysts are proper Bayesians, they need not pursue the firm in obtaining private signals 

aggressively by posting largely positively biased estimates because they can simply learn almost 

as much from previous forecasts.  Our analysts can also learn materially about the firm via 

evaluating the previously observed estimates.  Since previously posted estimates partially reflect 

some private information, the analysts may weigh these estimates into their assessment heavily 

depending on how they value the expertise and experiences of the previous analysts.10  

 Assume one analyst exists who follows any stock in the index.  Each stock’s earnings is 

comprised of two components: 1) common component, Xc ~ N(0, σc), and 2) idiosyncratic 

component, Xi ~ N(0, σi).  The analyst receives two noisy signals about each component:  εc ~ 

N(0, 1/ τc) with τc precision about the common component and εi ~ N(0, 1/ τi) with τi precision 

about the idiosyncratic.   
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The analyst then constructs two forecasts:  Fc = Xc + εc, about the common component of 

the firm’s earnings and, Fi = Xi + εi, about the idiosyncratic component of the firm’s earnings 

conditioned upon all available information.  She then reports an aggregated forecasts, F = Fc + 

Fi, about the firm’s earnings at time, t = 0.     

 As in Lim (2001), the objective of the analyst is to minimize her squared difference error, 

or equivalently, to follow the quadratic objective function  below: 

 

( )[ ] [ ]( ) ( ){ }Ω+Ω−=Ω− ||min|min 22 XVarXFXF
FF

ΕΕ  (1) 

 

where, E[ · | Ω] is the conditional expectations operator, Ω is the information set available at the 

time of earnings estimation, and X = Xc + Xi. 

  Similar to Lim (2001), we can rewrite the objective function as a function of the analyst’s 

forecast bias, or: 

( ){ }Ω+ |min 2 XVarb
b

 (2) 

 

For the case of only one analyst following the stock, we arrive at the exact same results as 

Lim (2001).  However, we now assume that at time t = 0+, a new analyst initiates following the 

stock.  Since at this time, in addition to his private signals, the new analyst also knows the 

incumbent’s forecast, his forecast should reflect this knowledge.  Let’s assume that the new 

analyst receives two noisy signals about each component of the earrings:  ε'c ~ N(0, 1/ τ'c) with τ'c 

precision about the common component and ε'i ~ N(0, 1/ τ'i) with τ'i precision about the 

idiosyncratic.  The new analyst then constructs two forecasts:  F'c = Xc + ε'c, about the common 

component of the firm’s earnings, and F'i = Xi + ε'i, about the idiosyncratic component of the 
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firm’s earnings conditioned upon all available information.  He then reports an aggregated 

forecasts, F' = F'c + F'i, about the firm’s earnings at time, t = 0+.   

We further assume that the noises in the analysts’ estimates of the idiosyncratic 

component of earnings are correlated.  The intuition is that since private channels through which 

analysts gain access to hidden information are derived from the same firm, these channels reveal 

quite similar, if not identical, private information.  We therefore assume that the idiosyncratic 

components of the analyst’s signal are correlated: E[εi , ε'i] = ρi (τi τ'i) –1.  Likewise, since both 

analysts may have experience dealing with large, blue-chip firms, their errors in assessing the 

common component of earnings may well be highly positively correlated.  Hence, we assume 

that common components of the analyst’s signal are correlated: E[εc , ε'c] = ρc (τc τ'c) –1.  

The new analyst then faces a quadratic objective such as the following: 

( ) ( ){ }Ω+′
′

||min 2

|
XVarbb

bb
 (3) 

or,  

( ) ( ){ }iicciiccbb
XXFXXFXVarbb εεεε ′+′+′+′=′+++=+′

′
,||min 2

|
 (4) 

 

Assuming that all common and idiosyncratic noises are independent of each other, the new 

analyst objective function can be expressed as: 

( ) ( ){ }Θ−+′
′

XVarbb
bb

2

|
|min  (5) 
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By way of assumptions, we know that  
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The new analyst quadratic objective function then can be expressed as [see Appendix for 

details]: 
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As in Lim (2001), we further assume that analysts have access to private channels which 

improve their forecasts, or alternatively, τi(b) and τ'i(b'|b). However, these private channels have 

diminishing returns.  In other words, we assume that: 

( ) ( )
0
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∂
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bbbbbb
iiii ττττ  

Note that the objective for the new analyst is to minimize his squared error using his conditional 

bias.  Unlike the case in Lim (2001), a new analyst chooses his bias conditioned upon old 

analyst’s bias simply because he can learn from existing analyst estimation. In short, the new 

analyst has to set his bias such that: 
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In the following section we study the relationship between the original analyst’s bias, b, and that 

of the new analyst, (b'|b) in details.  See Appendix for more details on derivation of (7). 

A. Comparative Statics 

 Note that since equation (7) is a nonlinear function of bias, the solution for (7), and hence 

the comparative statics of the same, cannot be obtained analytically.  To gain some insight into 

how characteristics of the firm’s earnings and analysts’ signals affect the new analyst’s bias, we 

resort to simulation.  We first need to make some assumptions about the fundamental 

relationship between analysts’ bias and the accuracy of their estimates.  As is evident from 

Figure 1 and for the sake of brevity, we choose the analyst’s idiosyncratic precision to be a 

function of her or his bias as follows: 
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Note that as is shown in the aforementioned, the tanh(·) has two major appealing features: 

diminishing returns and symmetry.  This means that if an analyst reports an unfavorable forecast, 

she looses accuracy.  Further, the extent to which the analyst can improve her accuracy by 

tapping into private sources is limited (see Figure 1).  Note that the parametric structure of the 

accuracy function determines 1) how sensitive the analyst’s forecast is to private channels, and 

2) how much of the analyst’s forecast is due to the private signals.   

Parameter α reflects how much of the precision is due to the firm’s private information.  

As α increases, the precision becomes more dependent on the firm’s private information.  In 

other words, an analyst with high α has less ability to discern information on his own.  Parameter 

β reflects at what speed the accuracy changes with bias.  In other words, β reflects the 

information asymmetry between the analyst and the firm.  Firms with lower β have heightened 

sensitivity to informational asymmetry and hence even small bias can largely improve the 

accuracy.  Parameters K and B allow us to adjust how accuracy changes as bias goes from –∞ to 

+∞.  For instance, by setting K to one and B to zero, we guarantee that the accuracy is between 

zero and two, or alternatively the dispersion of analyst signal is anywhere from half of the 

median earnings to infinity. 

[Insert Figure 1 here] 

 The results of the numerical analysis, Tables I to III and Figures 2 and 3, indicate a 

number of interesting relationships between optimal bias for new analysts and the fundamental 

characteristics such as correlation between common errors, idiosyncratic errors, and original and 

new analysts’ common errors.  The most interesting and pronounced comparative static is an 

inverse relationship between original and new analysts’ biases: as the original analyst’s increases 

her bias, the new analyst’s decreases his.  Note that here an analyst can extract information about 
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the idiosyncratic signal by: 1) using her own knowledge of the firm and the industry, 2) utilizing 

available private sources, and 3) observing the previously posted forecast.  Moreover, analysts 

are proper Bayesians who incorporate prior information in their estimates by weighting all 

signals according to their accuracies.  As such, the new analyst will accordingly weight the old 

estimates to construct a posterior belief about the firm’s earnings.  However, in our setting, the 

extent to which an analyst can gain accuracy by using private channels homogeneous across all 

analysts, implying that the maximum precision obtainable with regard to idiosyncratic signals by 

either old or new analysts is same.   

Since the analyst’s objective is to forecast earnings with the least error, the new analyst 

need not overcompensate by posting a bias larger than the previous. Rather, she need only post a 

large enough bias to optimally extract valuable, undisclosed information from private channels.  

This, however, is more consistent with the idea that analysts learn from each other.  Since in our 

model the bias is the difference between the forecasted and expected earnings, a new analyst 

posting a small bias after observing a large bias posted by an original analyst is tantamount to 

learning because the new analyst deviates from consensus by getting closer to the true earnings.  

This corresponds to the recent findings of Bernhardt, Campello and Kusoati (2004) which shows 

that, conditional on the expected earnings, subsequent revisions tend to deviate from the 

consensus. In fact, the overall direction of the revised estimates is in the opposite direction of the 

consensus movement.   

[Insert Table I here] 

[Insert Table II here] 

[Insert Table III here] 

[Insert Figure 2 here] 
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[Insert Figure 3 here] 

 An interesting feature of our model is that it can isolate the effect of cross-sectional 

differences in forecast ability; hence, it permits one to focus on the interaction between the 

analyst and her private information channel.  Our results indicate that factors such as the 

analysts’ expertise, quality of private channels, and correlation of signals significantly affect the 

way the learning process works.  The interactions between these factors and the consensus bias 

shed light as to when and for whom herding and learning are optimal strategies.  For instance, we 

find partial support for the herding literature when analyst expertise is considered.  We show that 

young, inexperience analysts tend to post larger biases, i.e., follow the crowd more closely.  Note 

that since we define bias to be the difference between the analyst’s own unconditional 

expectation of earnings and her posted forecast, any large bias implies that the analyst is moving 

away from her own beliefs and conforming more with the crowd.  As is shown in Table I and 

Figure 1, when α rises, i.e., the analyst efficacy deteriorates and his reliance on the firm 

increases, the optimal bias rises significantly.  The association between analyst expertise and 

optimal bias, however, is not linear. At very high levels of α, when an analyst almost exclusively 

has to rely on the firm to improve the accuracy of his estimates, the costs, or squared error, 

become so large that the analyst decides to stay with his own beliefs.  It is important to note that 

the degree to which an inexperienced analyst decreases his bias is a direct function of the 

observed bias.  In other words, when older estimates seem to be highly positive, the 

inexperienced analyst can easily rely on the consensus to gain insight into the hidden piece of 

information because favorable older estimates should contain highly precise information.    

 Another interesting comparative static is that information asymmetry between the firm 

and the analyst affects the optimal bias considerably (see Table I and Figure 2).  When both new 
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and old analysts are equally talented, the new analyst tends to post a lower bias as the degree of 

information asymmetry, as inversely measured by β, decreases.  This is not surprising because 

the new analyst finds both the gathering and processing of information about such firms easier.  

This is particularly true when the previously reported consensus is known to be equally (or more) 

accurate and, hence, the reasonably accurate information can then be deduced without appeasing 

management too much.  Results in Table I, however, show that when the new analyst is more 

competent than the old analyst, as the degree of information asymmetry between firm and 

analyst declines, the optimal bias increases.  This seems counterintuitive only if we do not 

consider the old analyst’s comparative lack of expertise.  Note that when the new analyst can 

better forecast the firm’s performance, the bias of the old analyst does not appear to have much 

validity in that large biases in this scenario solely compensate for lack of competence.  This bias, 

however, is less informative for the more competent analyst simply because she could have 

easily achieved most of the resulting precision without any bias.  The more competent new 

analyst hence has to increase her bias to guarantee that privately acquired information is truly 

unique and hence enhances precision.  Indeed, this is consistent with the main conjecture and 

principle finding of Bernhardt, Campello and Kusoati (2004) which shows that more competent 

analysts deviate from the consensus more to signal their own ability more clearly. 

 Our results also indicate that the correlation of the signals of old and new analysts 

influences the magnitude of optimal bias significantly.  Both correlations between common 

components and correlation between idiosyncratic components have a positive impact on the 

new analyst’s conditional bias:  as either of the common or idiosyncratic components of analysts’ 

forecasts become more interlinked, the new analyst is less likely to post a non-positive bias.  The 

overall intuition is rather simple: the more positively correlated signals become, the less 
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informative the resulting bias becomes for other analysts because embedded uniqueness 

vanishes. When the idiosyncratic signals become more positively correlated across analysts, the 

forecasting analyst learns to find less unique, untapped information in other analysts’ forecasts, 

therefore keeping her bias positive so that she can increase her overall accuracy by tapping into 

private channels.  When the common signals become more positively correlated across analysts, 

the two analysts become more equally able to discern and incorporate publicly available 

information in constructing their estimates and thus, they learn less about the common 

components from each other’s biases.   

 Interestingly, while an increase in the correlation of the idiosyncratic components 

increases the bias of the new analyst’s estimate moderately, an increase in the correlation of the 

common components across analysts increases the bias of the new analyst’s estimate sharply.  

The main reason for the difference in the degree of sensitivity between the common  and 

idiosyncratic components of earnings lies in the extent to which an analyst perceives previous 

forecasts to be related to diligent private channeling.  Note that an analyst improves her overall 

forecast accuracy by increasing the precision of both the common and idiosyncratic signals.  

This, however, means that whichever signal has the higher precision plays a more significant role 

in the overall accuracy of a forecast.11  When an analyst finds her common signal comparatively 

more accurate than her private signal, her overall forecast simply reflects her own expertise in 

discerning and understanding the common factor.  Private channels in such a case remain 

unexplored.  This leaves, therefore, any successor to doubt that any reasonable amount of private 

information is being reflected in the consensus.  The new analyst then has to appease 

management more than usual, i.e., post a larger bias, to be able to extract private information.  In 

doing so however, her overall forecast would be highly accurate - not only due to her large bias 
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increasing the accuracy of private signals tremendously, but also due to the observed consensus 

helping to improve the common signal accuracy as well.  Our results support this contention.  In 

the case where previous analysts have a more accurate common signal, the bias of the new 

analyst is larger while her forecast error is small. 

 Lastly, our results in Table IV, indicate that the dispersion of the different components of 

earnings themselves affect analyst forecast error as well as bias.  Interestingly, the impact of a 

reduction in the dispersion of the idiosyncratic component of earnings is more economically 

pronounced than a reduction in the common components of earnings.  This is because while a 

reduction in the dispersion of any component makes forecasting easier, a less disperse 

idiosyncratic component means that there is little information left unrevealed that private 

channels can possibly unravel.  Indeed, while a less dispersed common component makes 

forecasting easier, it does not entirely eliminates the possibility that considerable information can 

be ascertained from the firm by utilizing one’s private sources.  

[Insert Table IV here] 

II. Empirical Tests and Methodology 

 While not all of our earlier comparative statics can be tested empirically, we believe that 

the most pertinent elements can.  As noted earlier, the most prominent comparative static of our 

model is that the negative association between an analyst’s optimal bias and her forecast’s error 

is greatly influenced by her relative degree of expertise.  We also find that the degree of 

information asymmetry between the firm and the analyst affects the optimal bias and forecast 

errors.  These implications underline our main contentions that the degree of learning and 

herding is primarily a function of the information environment and how analysts process relevant 

information.  We empirically test the importance of experience and information asymmetry in 
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determining forecast error and bias, controlling for such things as industry dynamics, information 

asymmetry, earnings smoothing and regulatory effects.   

 To test our analytical predictions, we resort to the experiment of index inclusion.  Since 

sponsors such as Standard and Poor’s explicitly cite inclusion of a stock in their indices as a non-

informationally motivated action, this allows us to focus on cases whereby the information 

liquidity environment changes due to some exogenous event, and due to increased following.  

While newly included firms may improve the information environment by enhancing publicly 

available related data, as suggested by Denis, McConnell, Ovtchinnikov and Yu (2003), 

contemporaneously a host of new analysts joins the forecasting pool, potentially changing the 

information environment by providing additional sources of private and public information 

processing.  This, in turn, provides us with a perfect setting to investigate how learning and 

herding among analysts changes when the information environment changes. 

 As noted earlier, we show the extent to which forecasting can improve with changes in 

the information environment (i.e. index inclusion), depending on the analysts’ ability and the 

expertise.  Our analysis shows that as the analyst discerns private information more effectively, 

whether due to superior ability or a lower level of firm-analyst information asymmetry, her 

forecast bias decreases.  We first test if analyst experience affects her forecast bias, controlling 

for index inclusion.  Our contention is that experience materially captures analyst’s efficacy in 

information processing.  In short, we suggest that in the following model, the sign of experience 

should be significantly negative: 

εFDRegβAccrualβInclusionExpertiseError i
t

i
tt

i
t

i
t ++++++= SICsΦ2100 βηα  (9) 
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where, t is the quarter in which we measure bias/forecast error and i denotes the ith analyst.   We 

measure expertise in two ways, the first of which is more of an absolute measure and the second 

of which is relative in nature:  1) quarters of experience, and 2) quarters of experience divided by 

the average quarters of consensus analysts, respectively.  If the implications set forth by our 

theoretical model are correct, these proxies to be negatively related to the analyst’s forecast error, 

as measured by the difference between the firm’s actual earnings and the analyst forecast, as well 

as the analyst bias, as measured by the difference between analyst forecast and the aggregate 

consensus.  Note that we control for the impact of inclusion by using a dummy variable 

indicating whether the forecast was made after the index inclusion. We also control for industry 

fixed effects by including industry (two digit SIC code) dummies, earnings smoothing by 

employing accruals, and regulations by using a RegFD dummy, which describes whether the 

time period falls before or after the Fair Disclosure Regulation went into effect (August 2000).   

 Interestingly, our theoretical analysis also shows that the impact of the degree of 

information asymmetry between the firm and analyst on forecast error can also be influenced by 

the analyst’s expertise.  This predicted relationship can be found in Figure 4.  For inexperienced 

analysts, as the degree of asymmetry of information declines so too does the analyst’s bias and 

forecast error.  For experienced analysts, however, a decline in the information asymmetry does 

not necessarily reduce the analyst’s forecast error.  We contend that in the eye of a competent 

analyst, existing forecasts (i.e., consensus earning forecast) are not important because she cannot 

rely on the word of her perceived “less competent” peers.  This mistrust of consensus lends to an 

increased bias in order to extract private information effectively.  We thus test this phenomenon 

by estimating the following model for two subsets of firms: high and low asymmetry firms.  The 

resulting empirical equation is the following: 
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where, t is the quarter in which we measure bias and forecast error and i denotes the ith analyst.  

We measure the degree of information asymmetry between the analyst and the firm by 

measuring the difference between forecast error from estimates at least 360 days (4 quarters) 

before the actual earnings realization date to forecasts that are estimated within 90 days (same 

earnings quarter).  

[Insert Figure 4 here] 

 Lastly, our numerical results indicate that characteristics of earnings also affect the 

analyst’s bias. We find that as the uncertainty of the common and idiosyncratic components 

rises, the bias increases.  We posit that the common component’s uncertainty can be proxied by 

the standard deviation of the 2-digit SIC industry's earnings while the idiosyncratic uncertainty 

can be proxied by the ratio of the standard deviation of firm's earnings to the standard deviation 

of the 2-digit SIC industry's earnings. We hence test this phenomenon by estimating the 

following:  
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A. Data 

 Changes in the Standard and Poor’s 500 list are usually made when a company is 

involved in a merger, corporate restructure, or bankruptcy.  When a company is removed, it is 

normally replaced by the largest firm in its particular industry.  Changes are also made to the 

index when Standard & Poor’s wants the index to be more representative of the U.S. stock 
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market as a whole.  We collect all of the firms added to the S&P 500 from 1988 to 2003.  There 

are 324 additions during this period.  After making deletions for insufficient data for the relevant 

time needed for our empirical examination, we are left with 157 companies.  We collect the 

earnings estimates, as well as actual earnings, for twelve quarters before and twelve quarters 

beyond the addition onto the S&P 500.  Each analyst for each firm gives several estimates for 

each quarter due to revisions, and we include all of the revisions in our analysis.  We are 

interested in the bias that arises from increased coverage that occurs over time rather than the 

level of accuracy so this resolution remains acceptable.  We utilize the data from 197 analysts 

whose earnings estimates are listed in the FIRST CALL database.  Our dataset is based on the 

analyst.  Each entry includes the firm being covered, both their actual and estimated quarterly 

earnings per share as well as the industry of the firm being followed, the number of quarters the 

analyst has been following the firm/industry, the number of analysts (out of the 197) following 

the relevant firm in that quarter and the relevant quarter.  An entry exists for each of the 197 

analysts covered for each of the 157 relevant firms (new additions to the S&P 500) that they 

cover.  The entries total 118,248.  All analyst information is collected from the FIRST CALL 

database. 

 Consistent with Brown and Sivakumar (2001), Bradshaw and Sloan (2002), and Doyle, 

Lundholm, and Soliman (2003), and Johnson and Schwartz (2001)  we define earnings as the 

IBES reported actual earnings per share.  As discussed in the above papers, the IBES actual EPS 

is a good proxy for what a firm reports in its quarterly earnings announcement.   

Companies that consistently manage their earnings are much easier to forecast thus we 

control for this phenomena by using accruals as a proxy for earnings management behavior.  We 

define accruals as GAAP earnings less pro-forma earnings, as defined by Doyle, Lundholm, and 
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Soliman (2003). Dechow (1994), Dechow (1998), and Barth et al. (2001) show the current period 

accruals predict future cash flows. 

III. Empirical Findings 

A. Univariate Results 

Looking generally at the univariate results, we find evidence of both herding and learning.  

Comparing the errors, both forecast and aggregate, of ‘new guys’ versus ‘old guys,’ it is clear 

that overall the old guys do better than the new (Table V).  From Table V, it is also clear that 

new followers are less seasoned analysts: they have almost one fourth of the old followers 

experience in following similar firms.  As noted by earlier research [see, e.g., Bernhardt, 

Campello and Kusoati (2004) and Clement and Tse (2005)], these less experienced analysts tend 

to be herders (i.e., post zero or negative biases and forecast closer to the consensus) and make 

larger forecast errors.  The new analysts also tend to suffer from a larger degree of information 

asymmetry as compared to more experienced analysts.  

[Insert Table V here] 

At first glance, it appears that biases and forecast errors of both new and old analysts 

decrease after the inclusion occurs.  While this seems to support the notion that inclusions are not 

entirely information neutral and firms possibly produce more and better information in such an 

event, a closer look at the evolution of bias and the error across new and old analysts paints a 

much more interesting picture.   

Table VI shows the breakout of summary statistics by relative quarters around inclusion.  

Looking to relative quarter average biases and forecast errors for quarters pre- and post-

inclusion, we find that while eventually biases become smaller for new and old analysts, initially 

following inclusion, old analysts actually post much larger biases ($0.6523 versus $0.1559 for 
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old analysts versus new analysts respectively).  We also find that inclusion improves forecast 

errors for all analysts regardless of experience.  As noted in Table VI, while the pre- and post-

inclusion twelve-quarter average biases for old analysts are $0.0588 and $0.0160, respectively, 

the pre- and post-inclusion four-quarter average biases are -$0.0044 and $0.1054.  In fact, 

looking at the relative quarters -4 to +4, we find that the distinction between pre- and post-

inclusion over short and long run is mainly due the substantially larger bias in the first post-

inclusion quarter.   The large bias by experienced analysts after inclusion, coupled with the 

entrance of new analysts to the forecasting pool, confirms our earlier prediction.  The results 

suggest that seasoned analysts, when joined by less experience peers, need to post large positive 

biases to discern reliable information from the firm.  This is quite interesting because despite the 

so-called improved information environment, as contended by Denise et al (2003), old analysts 

find themselves in need of aggressive information acquisition when consensus information 

becomes less reliable due to uncertain forecasts made by new analysts whose talent at estimating 

earnings of the newly listed firm has not yet been revealed.   

[Insert Table VI here] 

Notably, however, both the cross learning of analysts and the gradual seasoning of new 

analysts over time help old analysts to reduce their biases to even smaller levels than those of 

pre-inclusion.  While average post-inclusion bias for old analysts stands at $0.1054 in the first 

four quarters, after twelve quarter past inclusion, the average bias drops by almost ten fold to 

$0.01060.  Interestingly, while old analysts’ bias decreases precipitously after inclusion, the new 

analysts’ bias remains almost intact.  The average four-quarter post inclusion bias for new 

analysts stands at -$0.0845 as opposed to an average twelve-quarter post inclusion bias for new 

analysts of -$0.0659.  This reveals an interesting dynamic in the learning process of different 
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analysts.  Our results suggest that initially when faced with unknown new comers, old analysts 

‘play it safe’ by ascertaining as much information from the firm as possible.  As time passes, 

however, old analysts are able to ‘measure up’ the competition by observing the quality of their 

forecast.  This dynamic, while not modeled directly, in fact can be deduced from our model as 

well.  Since in the repeated game, large biases will be followed by small ones and vice versa, we 

can see that high levels of information efficiency can be achieved quickly while old and new 

analysts interchange the role of the dominant information producer.  

To test whether analysts change roles as main information processors, we examine the 

correlations and autocorrelations of old and new analysts’ biases and errors.  As noted in Table 

VII, we see that the correlation between the bias of old and new analyst as well as the correlation 

between the change in bias for old and new analysts are strongly negative while the correlation 

between their forecast errors is strongly positive.  The initial four-quarter correlation of biases 

and quarterly change in biases are -0.4417 and -0.6979.  This implies that analysts 

interchangeably take on the role of main information processors, i.e., one analyst posts the larger, 

more optimistic bias while the other follows suit with a smaller bias.  Moreover, the rapid decline 

of quarterly autocorrelation of old analysts from -0.3578 in the first four quarters to 0.0366 in the 

first twelve quarters as opposed to a gradual decline of quarterly autocorrelation of new analysts 

from -0.7699 in the first four quarters to -0.5007 in the first twelve quarters indicates that more 

seasoned analysts learn about the changes in the information environment at a faster pace, 

including the quality of the forecasting pool, and hence they can achieve low levels of error more 

quickly.   

[Insert Table VII here] 
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B. Multivariate Results 

The results from the multivariate analysis support our univariate findings concerning the 

relationship between old and new analysts and the resulting herding versus learning behavior.  

Table VIII shows the estimation results from equations (9) and (10) controlling for the impact of 

experience, changes in the information environment, regulatory constraints, and firm specific 

variables on analyst expertise.  Both definitions of experience, the number of quarters of 

company-related experience and the relative experience of the analyst are negative for both 

forecast error and bias.  This implies that as the analyst discerns private information more 

effectively, her forecast error decreases, as previously posited.  Also in support of our theoretical 

findings, we find that experience leads to an increase in bias.  The impact of the change in the 

information environment (alternatively the information component of the shadow cost – see 

Chen et al., 2003) is irrefutable when looking at Table VIII.  Inclusion, which is a dummy 

variable taking on a value of one when the covered firm has been included in the S&P 500 Index 

and zero otherwise, is negative and highly statistically significant across all estimations.  When a 

company is added to the index, the increased coverage and increased publicity improves the 

information environment which improves all analysts’ accuracy.  This leads to a decrease in both 

forecasting error, and bias, regardless of experience.   The economic significance ranges from 

$0.03 drop in forecast error to an $0.082 decrease in bias.  However, by looking at the interaction 

between experience and inclusion, we find that inclusion impacts forecast error and bias in 

different ways, controlling for experience.  This interaction variable is not significant for the 

forecast error estimates, which suggests that experience and not the act of inclusion, is relevant 

in the deduction in the forecast error, supporting the literature in declaring inclusion as an 

information-neutral event and our supposition that it is the information pool as well as analyst 
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interaction that is important in enhancing the information environment to the point of increased 

analyst accuracy across the board.  In contrast to forecast error regressions, when regressing the 

same interactive variables (along with the same control variables) on bias we see that inclusion 

along with its interactive term with experience is significant.  This delineation lends support to 

the model prediction as well as univariate analysis that old analysts aggressively seek out firm 

information, as seen by the increased bias, when new inexperienced analysts first join the team 

and decrease the faith that old analysts have in the information provided in the consensus 

estimate.  The cumulative impact of experience on bias is a $0.01 increase when defining 

experience by number of quarters following the firm or $0.02 increase when defining experience 

relative to the analyst pool.  Reg F.D. leads to a reduction of forecast errors and bias.  The public 

information pool is now richer since companies have to report the same information to all 

analysts, which leads to a reduction in information asymmetry.  We do not find evidence that 

Reg F.D. leads to excessive noise from companies relaying uninformative information.  Accruals 

lead to more positive forecast errors.  These results might explain why companies engaged in 

earnings management always consistently beat analysts’ estimates (Brown and Caylor (2005)).  

However, earnings management leads to a decrease in analyst biases.     

[Insert Table VIII here] 

In addition to analyst experience, our theoretical model predicted that information 

asymmetry between the firm and the analyst also affects analyst’s forecasting.  In support of our 

these predictions, the results in Table IX demonstrate nicely that information asymmetry is 

positively related to forecast error.  Empirically, this translates into a positive and significant 

value for all estimations using the measures of information asymmetry (from a $0.139 to a 

$0.209 increase in forecast error).  We also look at the impact of information asymmetry 
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controlling for index inclusion, and find that even after inclusion, information asymmetry still 

leads to a $0.097 increase in forecast error.  Experience itself is once again negatively related to 

the forecast error indicating that the sensitivity of the private channel accuracy decreases over 

time (with experience).  Interestingly enough, once including information asymmetry, the overall 

impact of experience is still positively related to bias, implying that once analysts account for the 

level of private information available, they will continue to strive to distinguish themselves from 

their peers.   Information asymmetry, however, is negatively related to bias, resulting in a range 

of a $0.002 to a $0.017 decrease in bias.  When there is high information asymmetry, the cost of 

purchasing information would be prohibitively high so an analyst would post a lower bias, 

resorting instead to gaining as much information as she can from the consensus.   

[Insert Table IX here] 

 The impact of the level of certainty of signals seems to be relevant as well with regard to 

estimation error as shown in Table X.  An increase in the level of industry uncertainty, which is 

analogous to the common component of the signal, is positively associated with forecast error 

(bias), resulting in a $0.072 ($0.269) increase in forecast error (bias).  This implies that when 

uncertainty decreases, so too does the error or bias.  The company-level uncertainty, analogous 

instead to the idiosyncratic component, is also positively association with forecast error (bias), 

resulting in a $0.036 ($0.126) increase in forecast error (bias).  Interestingly, the magnitude of 

the impact seems to be greater at the industry level for forecast error and at the company level for 

the bias.  This implies that perhaps idiosyncratic uncertainty, relative to common, impels more 

dependence on the channel efficacy mentioned in the results above.  Full results are seen in 

Table X. 

[Insert Table X here] 
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IV. Conclusions 

Despite apparent differences, both the ‘learning’ and the ‘herding’ lines of literature 

underlie the fact that the optimal strategy of an analyst with regard to achieving a minimum 

forecast error is not to post unbiased estimates.  Determining the optimal bias and achieving a 

minimum forecast error is not as easily achieved as previously thought.  Both the ‘learning’ and 

the ‘herding’ lines of literature in analyst estimation place rigid assumptions in model or 

empirical specifications (i.e. linearity in the relationship between analyst expertise and bias) 

which destroys variation in optimization resulting in misspecification.  Lifting these restricting 

assumptions enables a more realistic optimization wherein two optimal strategies emerge.  Given 

differences in information asymmetry between the firm and analyst, analyst expertise and 

precision, either learning or herding may be optimal strategies.  We find that the extent to which 

analyst’s expertise and informational asymmetry play a role in determining the analyst’s bias is 

directly impacted by how dispersed are the common and idiosyncratic signals of all analysts as 

well as the extent of their correlation with each other.  We further find that such things as 

expertise, quality of private channels and the correlation of signals impact how efficiently an 

analyst can learn, implying that there are situations wherein analysts may be unable to learn and 

conversely that there are situations which are conducive to learning.  The implications of our 

results can help to reconcile the seemingly contrasting views in the literature and the true 

information content of analyst estimation.   
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Appendix 

A. The Objective Function: 

 Analyst objective function can be expressed as: 
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B. Solving for Optimal Bias: 

In equation (6), the objective function is  
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the objective function then can be rewritten as: 
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By taking the first derivative of with respect to b'|b, then we have: 
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After some algebra and rearranging terms, we then have: 
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Table I 
Model Comparative Statics 

 
This table reports the comparative statics of the new analyst’s conditional bias with respect to previously reported 
forecast, analyst’s expertise, characteristics of private informational channel, characteristics of the common and 
idiosyncratic component signals, characteristics of earnings, and correlation between signals.  The impact of the 
private informational channel on the analyst’s bias is represented by a functional relationship as τ′i = K′ [tanh((b – 
α′)/β′) + B′].  Parameters B′ and K′ govern the magnitude of accuracy obtainable through utilizing the private 
channel.  Parameter α′ determines how much of the precision is due to firm’s private information.  As α′ increases, 
the precision becomes more dependent on the firm’s private information.  In other words, an analyst with high α’ 
has less ability to discern information on his own.  Parameter β′ determines at what speed the accuracy changes 
with bias. In other words, β′ reflects the severity of the asymmetry of information between analyst and the firm.  
Firms with higher β′ have lower levels of informational asymmetry and hence any minimal positive bias can 
largely improve the accuracy. We assume that B = 1 and K = 1 so that the analyst’s precision about idiosyncratic 
noise is equally related to his/her ability as well as the firm’s privately revealed information.  For old analyst, we 
assume that precision is governed by τ = [tanh(b) + 1]. 

   
 Impact on New Analyst’s  

Conditional Bias, b′|b 
Impact on New Analyst’s 

Forecast Error 

Old Analyst’s Bias, b − − 

New Analyst’s Inexperience , α′ + + 

New analyst and Firm Information 
Asymmetry , 1/β′ 

−, when α′ < 0 

+ , when α′ ≥ 0 

−, when α′ < 0 

−, when α′ ≥ 0 

Old Analyst’s Common Signal’s 
Precision, τc 

+ + 

New Analyst’s Common Signal’s 
Precision, τ΄c 

− − 

Correlation between common 
components of signals, ρc 

− − 

Correlation between idiosyncratic 
components of signals, ρi 

+ + 

Earning’s common component’s 
dispersion, σc 

+ + 

Earning’s idiosyncratic component’s 
dispersion, σi 

+ + 
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Table II 

Comparative Statics of the New Analyst’s Conditional Bias: 
Impact of Characteristics of Private Informational Channels 

 
This table reports the comparative statics of the new analyst’s conditional bias with respect to characteristics 
of private informational channel.  The impact of the private informational channel on the analyst’s bias is 
represented by a functional relationship as τ′i = K′ [tanh((b – α′)/β′) + B′].  Parameters B′ and K′ govern the 
magnitude of accuracy obtainable through utilizing the private channel.  Parameter α′ determines how much of 
the precision is due to firm’s private information.  As α′ increases, the precision becomes more dependent on 
the firm’s private information.  In other words, an analyst with high has less ability to discern information on 
his own.  Parameter β′ determines at what speed the accuracy changes with bias. In other words, β′ reflects the 
severity of the asymmetry of information between analyst and the firm.  Firms with higher β′ have lower levels 
of informational asymmetry and hence any minimal positive bias can largely improve the accuracy. We 
assume that B = 1 and K = 1 so that the analyst’s precision about idiosyncratic noise is equally related to 
his/her ability as well as the firm’s privately revealed information.  For old analyst, we assume that precision is 
governed by τ = [tanh(b) + 1].  As for other parameters of interests, we assume that σc = 1.0, σi = 1.5, τc = 1.0, 
and τ΄c = 1.0. 
Panel A. α΄ = −1.0 and β΄ = 1 

 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.014007 0.573 0.014060 0.871 0.025258 0.685 0.045507 0.934 
1.0 0.012908 0.549 0.010000 0.855 0.022400 0.645 0.018676 0.931 
1.5 0.012534 0.541 0.008778 0.849 0.021351 0.631 0.004159 0.916 

Panel B. α΄ = 0.0 and β΄ = 1 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.095677 0.661 0.050614 0.935 0.134751 0.824 0.116489 0.953 
1.0 0.088079 0.630 0.031082 0.899 0.120020 0.769 0.064230 0.874 
1.5 0.085482 0.620 0.024788 0.884 0.114922 0.749 0.048724 0.851 

Panel C. α΄ = −1.0 and β΄ = 2 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.020900 0.598 0.016334 0.894 0.034705 0.731 0.030039 0.999 
1.0 0.018793 0.573 0.011134 0.871 0.030591 0.685 0.013344 0.936 
1.5 0.018222 0.564 0.009100 0.862 0.029124 0.668 0.017787 0.904 

Panel D. α΄ = 0.0 and β΄ = 2 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.053865 0.669 0.025629 0.937 0.076310 0.840 0.058843 0.963 
1.0 0.049063 0.637 0.015541 0.899 0.066914 0.781 0.033634 0.877 
1.5 0.047445 0.626 0.012367 0.885 0.063773 0.760 0.025310 0.853 
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Table III 

Comparative Statics of the New Analyst’s Conditional Bias: 
Impact of Distributional Characteristics of Common Signals 

 
This table reports the comparative statics of the new analyst’s conditional bias with respect to precision of 
private signals about common and idiosyncratic components of earnings across different levels of correlations 
between old and new analysts’ private signals about common and idiosyncratic components of earnings.  Here, 
we assume that τi = [tanh(b) + 1] and that τ΄i = [tanh(b΄|b) + 1].  We assume that σc = 1.0 and σi = 1.5. 
Panel A. τc = 0.5 and τ΄c = 0.5 

 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.095677 0.661 0.050614 0.935 0.134751 0.824 0.116489 0.953 
1.0 0.088079 0.630 0.031082 0.899 0.120020 0.769 0.064230 0.874 
1.5 0.085482 0.620 0.024788 0.884 0.114922 0.749 0.048724 0.851 

Panel B. τc = 0.5 and τ΄c = 1.0 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.048008 0.452 0.010900 0.569 0.033918 0.582 0.154740 0.319 
1.0 0.036343 0.390 0.001528 0.484 0.016960 0.485 0.065224 0.203 
1.5 0.032502 0.368 0.000000 0.452 0.013458 0.451 0.036060 0.170 

Panel C. τc = 1.0 and τ΄c = 0.5 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.159632 0.527 0.172454 0.685 0.219658 0.689 0.368181 0.729 
1.0 0.150296 0.509 0.156807 0.673 0.199504 0.653 0.310928 0.760 
1.5 0.147012 0.502 0.150902 0.669 0.192742 0.639 0.283596 0.763 

Panel D. τc = 1.0 and τ΄c = 1.0 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.093323 0.390 0.071882 0.479 0.087433 0.573 0.160702 0.497 
1.0 0.073823 0.344 0.044732 0.427 0.039337 0.482 0.091053 0.389 
1.5 0.067052 0.327 0.035829 0.406 0.029990 0.449 0.069127 0.358 
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Table IV 
Comparative Statics of the New Analyst’s Conditional Bias: 

Impact of Distributional Characteristics of Earnings 
 
This table reports the comparative statics of the new analyst’s conditional bias with respect to dispersions of 
common and idiosyncratic components of earnings across different levels of correlations between old and new 
analysts’ private signals about common and idiosyncratic components of earnings.  Here, we assume that τi = 
[tanh(b) + 1] and that τ΄i = [tanh(b΄|b) + 1].  We assume that τc = 1.0 and τ΄c = 1.0. 
Panel A. σc = 1.0 and σi = 1.5 

 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.095677 0.661 0.050614 0.935 0.134751 0.824 0.116489 0.953 
1.0 0.088079 0.630 0.031082 0.899 0.120020 0.769 0.064230 0.874 
1.5 0.085482 0.620 0.024788 0.884 0.114922 0.749 0.048724 0.851 

Panel B. σc = 0.5 and σi = 1.5 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.086443 0.624 0.043038 0.861 0.119135 0.768 0.099094 0.877 
1.0 0.079830 0.597 0.026514 0.830 0.106696 0.720 0.055595 0.809 
1.5 0.077565 0.587 0.021182 0.818 0.102393 0.702 0.042185 0.790 

Panel C. σc = 1.0 and σi = 0.5 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.058146 0.501 0.023958 0.641 0.073997 0.591 0.054705 0.652 
1.0 0.054366 0.483 0.014945 0.623 0.067694 0.562 0.032423 0.612 
1.5 0.053058 0.477 0.012015 0.616 0.065512 0.551 0.024828 0.601 

Panel D. σc = 0.5 and σi = 0.5 
 ρc = 0.0 and ρi = 0.0 ρc = 1.0 and ρi = 0.0 ρc = 0.0 and ρi = 1.0 ρc = 1.0 and ρi = 1.0 
         

b b′|b Error b′|b Error b′|b Error b′|b Error 
0.5 0.023919 0.314 0.007672 0.362 0.026473 0.347 0.016948 0.366 
1.0 0.022867 0.307 0.004887 0.357 0.025138 0.337 0.010953 0.353 
1.5 0.022495 0.304 0.003965 0.354 0.024687 0.333 0.008510 0.349 
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Table V 
Sample Statistics 

 
This table reports mean and standard deviation of variables of interest for the entire sample, new analysts and old analysts across for entire period, periods 
prior to and after the S&P500 inclusion. Bias is the forecast minus consensus.  Forecast Error is the actual earnings minus forecast.  Relative experience is 
the quarters of experience following same 2-digit SIC firms as the included firm as compared to the average number of quarters of experience of other 
analysts following the newly included firm.  IAB, the biased-based information asymmetry proxy, is defined as the average forecast bias using forecasts 
created at least 360 days (4 quarters) prior to the earnings realization date minus the average forecast bias using forecasts created less than or equal to 90 
days (one quarter) prior to the earnings realization date.  IAE is an analogous measure to IAB using forecast error instead of bias. Old analysts are defined as 
analysts with more than 1 quarter of experience.  New analysts are defined as analysts with no experience following the firm (this is the first quarter of 
following).  Mean equality test for differences between new and old analysts for the entire period as well as for before and after inclusion periods are all 
significant at 5% level. 
 
 Entire Period Before Inclusion After Inclusion 
Variable Obs Mean Std. Obs Mean Std. Obs Mean Std. 
Panel A. All Analysts          
Bias 104296 0.01436 2.67268 42119 0.04359 2.33941 56809 -0.00140 3.00381 
Forecast Error (FE) 106503 0.10532 0.65046 42361 0.14082 0.53420 58704 0.07848 0.71091 
Relative Experience  106503 1.00000 0.59482 42361 0.94571 0.58719 58704 1.04129 0.59761 
IAB 88930 1.18292 3.68478 34713 0.77394 2.58798 49567 1.48374 4.28463 
IAE 88942 0.42571 0.74515 34856 0.37241 0.67676 49418 0.45940 0.77787 
          
Panel B. Old Analysts          
Bias 100976 0.01629 2.69837 40267 0.04664 2.34796 55520 0.00042 3.03505 
Forecast Error (FE) 103117 0.10429 0.65494 40471 0.14019 0.53690 57387 0.07782 0.71447 
Relative Experience 103117 1.02684 0.58468 40471 0.98129 0.57578 57387 1.06128 0.58891 
IAB 86611 1.19444 3.70799 33371 0.77763 2.58660 48734 1.49387 4.30426 
IAE 86638 0.42681 0.74703 33519 0.37212 0.67583 48592 0.46054 0.78005 
          
Panel C. New Analysts          
Bias 3320 -0.04430 1.71574 1852 -0.02275 2.14459 1289 -0.07969 0.94393 
Forecast Error (FE) 3386 0.13667 0.49409 1890 0.15448 0.47269 1317 0.10712 0.53240 
Relative Experience 3386 0.18262 0.16699 1890 0.18378 0.14590 1317 0.17058 0.17690 
IAB 2304 0.38443 0.66950 1337 0.37953 0.69981 826 0.39252 0.63361 
IAE 2319 0.75258 2.64254 1342 0.68221 2.62146 833 0.89115 2.85424 
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Table VI 

Time Series Summary Statistics of Bias and Forecast Error For Old and New Analysts 
 
This table reports mean bias and mean forecast error for an inclusion event window of (-4,+4) for both new and old analysts.  The tables also reports summary 
information for windows of twelve, eight, and four quarters prior to and after the inclusion. Mean equality test for differences between new and old analysts 
are significant at 5% level. 
 

  All Analysts Old Analysts New Analysts Old minus New 
Relative 
Quarter 

Num. 
Analysts Bias 

Forecast 
Error Bias 

Forecast 
Error Bias 

Forecast 
Error Bias 

Forecast 
Error 

          
-4 19 -0.2704 0.1218 -0.2765 0.1220 -0.0176 0.1149 -0.2589 0.0071 
-3 19 -0.0078 0.3857 0.0014 0.3780 -0.2189 0.5613 0.2203 -0.1833 
-2 19 0.0538 0.1322 0.0466 0.1326 0.2577 0.1196 -0.2111 0.0130 
-1 20 0.2017 0.0145 0.2066 0.0138 0.0478 0.0354 0.1588 -0.0216 
0 21 -0.0482 0.1184 -0.0494 0.1168 -0.0124 0.1660 -0.0370 -0.0492 
1 21 0.6302 0.1256 0.6523 0.1284 -0.1559 0.0316 0.8082 0.0968 
2 21 -0.1500 0.0202 -0.1567 0.0164 0.0733 0.1458 -0.2300 -0.1294 
3 23 -0.0288 -0.0304 -0.0246 -0.0312 -0.2431 0.0093 0.2185 -0.0405 
4 23 -0.1845 0.0306 -0.1863 0.0273 -0.0668 0.2436 -0.1195 -0.2163 
          

Avg [-4,-1] 19 -0.0045 0.1308 -0.0044 0.1293 0.0138 0.1662 -0.0182 -0.0369 
Avg [0, +4] 22 0.1008 0.0585 0.1054 0.0576 -0.0845 0.0882 0.1899 -0.0306 

          
Avg [-8,-1] 19 0.0248 0.1327 0.0283 0.1314 -0.0252 0.1615 0.0535 -0.0301 
Avg [0, +8] 22 -0.0263 0.0478 -0.0247 0.0464 -0.0896 0.1057 0.0649 -0.0593 

          
Avg [-12,-1] 19 0.0530 0.1427 0.0588 0.1429 -0.0180 0.1445 0.0768 -0.0016 
Avg [0, +12] 23 0.0139 0.0906 0.0160 0.0900 -0.0659 0.1038 0.0819 -0.0138 
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Table VII 
Correlation Analysis of Old and New Analysts’ Biases and Forecast Errors 

 
This table reports correlations and one-period lagged auto-correlations of old and new analysts’ biases and forecast error for windows of twelve, eight, and four 
quarters after the inclusion. 

 
     
 Biases Forecast Errors Quarterly Change in Biases Quarterly Change in Forecast Errors
Correlations:     
ρ old, new [0, +12] -0.1341 0.1092 -0.5191 0.0421 
ρ old, new [0, +8] -0.2733 0.1159 -0.6215 0.1242 
ρ old, new [0, +4] -0.4417 0.0547 -0.6979 0.3278 
     
 Old Analyst’s Bias Old Analyst’s Error New Analyst’s Bias New Analyst’s Error 
One-period Autocorrelations:     
ρ Q, Q – 1 [0, +12] 0.0366 0.0404 -0.5007 -0.3557 
ρ Q, Q – 1 [0, +8] -0.0468 0.1987 -0.6153 -0.7449 
ρ Q, Q – 1 [0, +4] -0.3578 0.4875 -0.7699 -0.9485 
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Table VIII 

Impact of Competency (i.e., Experience) on Analysts Forecasting 
 
The following OLS regression is specified:  BIASit (ERRORit )= α0 + η Expertisei,t + β0Inclusionit  + β1Accrualsit + 
β2RegFDt + Φ SICs + ε.  The dependent variable refers to the analyst’s bias (forecast error) for the new or old 
analyst with term as specified.  Expertise is measured  by experience or relative experience.  Experience is the 
number of quarters the analyst has followed the firm for which forecast error is calculated.  Relative Experience is 
experience divided by average experience of the sample of analysts in the relevant industry for that quarter.  
Included is a dummy variable indicating if the firm is included in the S&P500.  Accruals accounts for accounting 
accrued revenue/liabilities utilized for earnings smoothing.  RegFD is a dummy variable which takes on a value 
of 1 if RegFD is in effect and 0 otherwise.  Coefficients on 2-digit SIC code dummies are not reported for brevity. 
The absolute values of t-statistics are reported in brackets. *, **, *** indicate significance levels of 10, 5, and 1 
percent respectively. 

 
 FE Bias 
Experience -0.005*  -0.010**  
 [0.003]  [0.005]  
InclExp 0.002  0.021***  
 [0.003]  [0.006]  
InclRelExp  0.005  0.036*** 
  [0.004]  [0.008] 
Relative Experience  -0.011***  -0.016*** 
  [0.003]  [0.006] 
Included -0.030*** -0.030*** -0.082*** -0.071*** 
 [0.008] [0.005] [0.014] [0.009] 
accruals 0.267*** 0.267*** -0.018*** -0.017*** 
 [0.002] [0.002] [0.003] [0.003] 
RegFD -0.049*** -0.050*** -0.050*** -0.049*** 
 [0.003] [0.003] [0.005] [0.005] 
Constant 0.046** 0.047** 0.070* 0.065* 
 [0.020] [0.019] [0.036] [0.035] 
Observations 105774 105774 104568 104568 
R-squared 0.28 0.28 0.01 0.01 
F-test 928.41 928.8 16.93 17.18 
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Table IX 

Impact of Information Asymmetry on Analysts Forecasting 
 

The following OLS regression is specified:  BIASit (ERRORit )= a0 +γ Information Asymmetryt + β0 Includedt+  β1Accrualst + β2RegFDt + β3Expertisei,t +  Φ 
SICs +ε..  The dependent variable refers to the analyst’s bias (forecast error) for the new or old analyst with term as specified.  Included is a dummy variable 
indicating if the firm is included in the S&P500.  Information asymmetry is error-based; defined as the forecast error when forecast was made three quarters 
prior to the current quarter minus the forecast error when forecast was made one quarter prior to the current quarter.  Expertise is measured  by experience or 
relative experience.  Experience is the number of quarters the analyst has followed the firm for which forecast error is calculated.  Relative Experience is 
experience divided by average experience of the sample of analysts in the relevant industry for that quarter.  Included is a dummy variable indicating if the 
firm is included in the S&P500.  Accruals accounts for accounting accrued revenue/liabilities utilized for earnings smoothing.  RegFD is a dummy variable 
which takes on a value of 1 if RegFD is in effect and 0 otherwise.  Coefficients on 2-digit SIC code dummies are not reported for brevity. The absolute values 
of t-statistics are reported in brackets. *, **, *** indicate significance levels of 10, 5, and 1 percent respectively. 

 
 FE Bias 
Experience -0.012***  -0.013***  -0.010*  -0.010*  
 [0.003]  [0.003]  [0.006]  [0.006]  
InclExp 0.002  0.003  0.022***  0.023***  
 [0.004]  [0.004]  [0.008]  [0.008]  
Relative Experience  -0.014***  -0.014***  -0.014**  -0.014** 
  [0.004]  [0.004]  [0.007]  [0.007] 
InclRelExp  0.001  0  0.034***  0.034*** 
  [0.005]  [0.005]  [0.009]  [0.009] 
Included -0.030*** -0.028*** 0.008 0.013** -0.085*** -0.070*** -0.072*** -0.056*** 
 [0.010] [0.006] [0.010] [0.007] [0.018] [0.011] [0.018] [0.012] 
IAIncl   -0.112*** -0.112***   -0.039*** -0.039*** 
   [0.006] [0.006]   [0.011] [0.011] 
IA 0.139*** 0.139*** 0.209*** 0.209*** -0.002 -0.002 0.022** 0.022** 
 [0.003] [0.003] [0.005] [0.005] [0.006] [0.006] [0.009] [0.009] 
accruals 0.239*** 0.239*** 0.240*** 0.240*** -0.016*** -0.015*** -0.015*** -0.015*** 
 [0.002] [0.002] [0.002] [0.002] [0.004] [0.004] [0.004] [0.004] 
RegFD -0.066*** -0.068*** -0.067*** -0.069*** -0.056*** -0.056*** -0.056*** -0.056*** 
 [0.004] [0.004] [0.004] [0.004] [0.007] [0.007] [0.007] [0.007] 
Constant 0.065* 0.052 0.039 0.023 0.086 0.08 0.077 0.07 
 [0.038] [0.038] [0.038] [0.037] [0.069] [0.068] [0.069] [0.068] 
Observations 75655 75655 75655 75655 74861 74861 74861 74861 
R-squared 0.3 0.3 0.3 0.3 0.01 0.01 0.01 0.01 
F-test 736.36 736.44 731.29 731.34 11.33 11.47 11.37 11.49 
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Table X 
Impact of Uncertainty of Signals on Analysts Forecasting 

 
The following OLS regression is specified:  BIASit (ERRORit) = a0 + β0 Uncertaintyt + β0 Included + 
β1Accruals + β2 NumAnalysts + β3RegFD + Φ SICs + ε .  The dependent variable refers to the bias/forecast 
error for the new or old analyst with term as specified. StdDev Industry is the quarterly standard deviation of 
actual quarterly earnings computed at the 2-digit SIC level, and  StdDev Company / StdDev Industry, the 
standard deviation of actual earnings computed at the company level and scaled by industry-level standard 
deviation. Included is a dummy variable indicating if the firm is included in the S&P500.  Accruals accounts for 
accounting accrued revenue/liabilities utilized for earnings smoothing.  RegFD is a dummy variable which 
takes on a value of 1 if RegFD is in effect and 0 otherwise.  Observations are analyst-year specific. 
Coefficients on 2-digit SIC code dummies are not reported for brevity. Standard errors are reported in brackets. 
*, **, *** indicate significance levels of 10, 5, and 1 percent respectively. 
 
 Bias Bias Forecast Error Forecast Error 
     
StdDev Industry 0.269***  0.072***  
 [0.005]  [0.011]  
StdDev Company / StdDev Industry  0.126***  0.036*** 
  [0.005]  [0.011] 
Included -0.049*** -0.032*** -0.037*** -0.035*** 
 [0.004] [0.004] [0.010] [0.010] 
Accruals 0.302*** 0.345*** -0.029*** -0.018*** 
 [0.002] [0.002] [0.006] [0.005] 
NumAnalysts -0.001*** -0.001*** -0.001*** -0.001*** 
 [0.000] [0.000] [0.000] [0.000] 
RegFD -0.118*** -0.102*** -0.090*** -0.090*** 
 [0.004] [0.004] [0.009] [0.010] 
Constant 0.048*** 0.045*** 0.127*** 0.126*** 
 [0.003] [0.004] [0.008] [0.009] 
     
Observations 105767 103521 104561 102332 
R-squared 0.21 0.19 0.01 0.01 
F-statistics 5748.32 5006.66 133.95 126.53 
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α = 0, β = 1, B =1, and K = 1 α = 0, β = 2, B =1, and K = 1 

  
α = 2, β = 1, B =1, and K = 1 α = 2, β = 2, B =1, and K = 1 

  
Figure 1. This plot demonstrates the relationship between the accuracy (vertical axis) and bias (horizontal axis).  The 
accuracy increases with bias when analyst’s bias is positive; however, this relationship is not monotonically 
increasing: there are diminishing returns to making a positive bias.  In addition, a negative bias worsens the analyst’s 
access to private channels, hence reduces her accuracy.  The negative impact of a negative bias is also decreasingly 
diminishing.  This reflects the intuition that not all pertinent information is private and that markets, analysts 
included, do provide additional outside information about the firm.  The functional relationship plotted here are τ = K 
[tanh((b – α)/β) + B].  By adjusting parameters B and, we assure that accuracy is bounded when bias goes from –∞ to 
+∞.  Parameter α inversely measures the analyst’s efficacy, i.e., how much of the precision is due to firm’s private 
information.  As α increases, the precision becomes more dependent on the firm’s private information.  In other 
words, an analyst with high has less ability to discern information on his own.  Parameter β determines at what speed 
the accuracy changes with bias. In other words, β reflects the severity of the asymmetry of information between 
analyst and the firm.  Firms with higher β have lower levels of informational asymmetry and hence any minimal 
positive bias can largely improve the accuracy. 
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ρc = 0.0, ρi = 0.0 ρc = 1.0, ρi = 0.0 

 
ρc = 0.0, ρi = 1.0 ρc = 1.0, ρi = 1.0 

  
Figure 2. Comparative statics with respect to the analyst’s expertise, α: Aforementioned plots depict the 
relationship between new and old analyst’s bias for different degrees of analyst’s expertise across different 
correlation structures. ρc is the correlation between both analysts’ common errors and ρi the correlation 
between both analysts’ idiosyncratic errors. The original analyst’s common signal’s precision, σc, is 1.0 and 
the new analyst’s common signal’s precision, σi, is 1.50.  Earning’s common component’s dispersion, τc, is 1.0 
and idiosyncratic component’s dispersion, τ΄c, is 1.0. 
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ρc = 0.0, ρi = 0.0 ρc = 1.0, ρi = 0.0 

ρc = 0.0, ρi = 1.0 ρc = 1.0, ρi = 1.0 

  
Figure 3. Comparative statics with respect to the information asymmetry, β: Aforementioned plots depict the 
relationship between new and old analyst’s bias for different degrees of analyst-firm degree of information 
asymmetry across different correlation structures. ρc is the correlation between both analysts’ common errors and ρi 
the correlation between both analysts’ idiosyncratic errors. The original analyst’s common signal’s precision, σc, is 
1.0 and the new analyst’s common signal’s precision, σi, is 1.50.  Earning’s common component’s dispersion, τc, is 
1.0 and idiosyncratic component’s dispersion, τ΄c, is 1.0. 
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1 The theoretical bias denotes the difference between the analysts' forecast and mean of the earnings distribution.  
Empirically, extant studies define bias to be the difference between an analyst’s forecast and the consensus forecast.  
We follow these conventions throughout the paper. Our theoretical and empirical bias are same as the literature. 
2 As far as the general construct of the model goes, we are partly motivated by Bernhardt, Campello and Kusoati 
(2004) who argue that when analysts, as proper Bayesians, incorporate all information in their forecasts, and when 
private sources of information are common, the forecast clustering, which is often seen as an evidence of herding, 
can be the natural outcome of a learning process through which analysts reflect their own and others’ information.        
3 Some learning studies that permit analysts to improve estimates by utilizing public and private sources [see, e.g., 
Lim (2001) who shows that a positive bias serves to appease to managers in order to gain access to private 
information].   
4 Our analytical findings are partly supported by the existing evidence.  For instance, Trueman (1994) shows that 
less competent analysts discount their own estimates and report an estimate, which is consistent with what other 
analysts propose to avoid dire career consequences.  Bernhardt, Campello and Kusoati (2004) finds that analyst with 
greater experience and more firms followed tend to consistently and significantly differ from consensus estimates. 
5 Both learning and herding strands of literature reflect extreme examples of Bayesian updating when analysts 
assume the precision of their signals are infinitely large or small.  Typical herding studies such as Trueman (1994) 
assume that analysts without expertise essentially disregard their own estimates fearing to stand out in the analyst 
crowd. Learning papers like Bernhardt, Campello and Kusoati (2004), however, assume that expert analysts 
confidently rely on their own estimates.   We differ from these studies in that we believe that only through the 
window of a proper Bayesian, one that incorporates all types of information without any predisposed belief about 
the validity of the information source, we can accurately model the analyst forecasting problem.   
6 Our analytical findings are partly supported by the existing evidence.  For instance, Trueman (1994) shows that 
less competent analysts discount their own estimates and report an estimate, which is consistent with what other 
analysts propose to avoid dire career consequences.  Bernhardt, Campello and Kusoati (2004) finds that analyst with 
greater experience and more firms followed tend to consistently and significantly differ from consensus estimates. 
7 Experience is defined by the number of quarters an analyst follows a firm.  We define new analysts as analysts 
with less than 3 quarters experience. 
8 The relationship between learning/herding and experience is noted by some of the recent studies such as Bernhardt, 
Campello and Kusoati (2004) and Clement and Tse (2005).  Both of these papers show that more seasoned analysts 
tend to post “bold” estimates; forecasts substantially different from consensus.   
9 Existing evidence indicates that analysts rarely post sell recommendation for a stock suggesting that losing a the 
firm’s favor can be viewed as a costly proposition.  In extremes, firms even pursue legal ramification for an 
analyst’s unfavorable recommendations.  In a 2001 congressional hearing, president and chief executive officer of 
the Association for Investment Management and Research told the U.S. House of Representatives Committee on 
Financial Services, Capital Markets Subcommittee, that “…In addition to pressures within their firms, analysts can 
also be, and have been, pressured by the executives of corporate issuers to issue favorable reports and 
recommendations. Regulation Fair Disclosure notwithstanding, recent history, supported by the results of a research 
study issued by Reuters, has shown that companies retaliate against analysts who issue 'negative' recommendations 
by denying them direct access to company executives and to company-sponsored events that are important research 
tools. Companies have also sued analysts personally, and their firms, for negative coverage. Such actions create a 
climate of fear that does not foster independence and objectivity.” 
10 Essentially, we also extend existing studies such as Lim (2001) by allowing stylized facts such as the 
correlatedness of analysts’ information, the efficacy of private information channels, and analysts’ expertise to play 
a central role in the analyst’s decisions making process.  In particular, while we follow Lim (2001) in that we 
assume an analyst’s objective function as a mean square error reduction problem in which a positive bias can 
improve quality of private signal, we extend Lim (2001) by allowing for interactions between different analysts, 
correlated information, and common wide spread shocks. 
11 Note that here we assume that the common component’s signal is more accurate than the idiosyncratic 
component’s signal.  We have experimented with alternative case where the idiosyncratic signal is more precise and 
found that results, as expected, is reversed.  


