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Affine Structural Models of Corporate Bond Pricing

Abstract

In existing structural models of corporate bond pricing, the underlying asset return volatility is
assumed to be constant, the jump component in the return process follows a compound Poisson,
and the interest rate is described by a one-factor model. In this paper, we consider an affine class
of structural models that can allow for stochastic asset return volatility, a high frequency jump
component in the return process, and a multi-factor term structure model. We provide analytical
results for both the price of corporate bonds and the real probability of default for this class of

models under certain assumptions on the recovery rate and default boundary.



Affine Structural Models of Corporate Bond Pricing

Assessing and managing credit risk of corporate bonds has been a major area of interest and concern to
academics, practitioners, and regulators. One widely used approach to the valuation of corporate bonds
is the so-called structural approach based on Black and Scholes (1973) and Mertort (R@&é)tly

there have been a number of empirical studies of structural models using bond data. For instance, Jones
and Rosenfeld (1984), Lyden and Saraniti (2000), Delianedis and Geske (2001), Ericsson and Reneby
(2001) and Eom, Helwege, and Huang (2004) examine the implications of the models on pricing using
individual corporate bond prices; Schaefer and Strebulaev (2004) on hedging; KMV (e.g. Kealhofer
and Kurbat (2001) and Leland (2002) on the actual default probability; and Huang and Huang (2002)
on both pricing and the actual default probability. Whereas the structural approach has been found quite
useful, the empirical evidence has also indicates that standard structural models still have difficulty in

accurately predicting spreads or explaining spreads and default rates simultaneously.

The main assumptions made in existing structural models include that the firm’s asset return volatil-
ity is constant; that the (default-free) interest rate is either constant or follows a one-factor model; and
that the jump component in the asset return process is modelled by a compound Poisson process. In
this paper, we extend the existing models by relaxing these three assumptions. More specifically, we
consider an affine class of structural models of corporate bond pricing, in which the underlying asset
volatility can be stochastic, the underlying asset return can include a high-frequency jump component,
and the interest rate process can be driven by multi factors. Under certain assumptions on the recovery
rate and default boundary, analytical results are available for both corporate bond prices and real default

probabilities under this class of models.

The paper is organized as follows. Section 1 considers an affine class of structural models of cor-
porate bond pricing. Section 2 discusses the implementation of models and reports numerical results.

Section 2 concludes.

IAnother popular approach, which is not the focus of this study, is the reduced-form approach of Jarrow and Turnbull
(1995) and Duffie and Singleton (1999). See also Das and Tufano (1996), Duffie, Schroder, and Skiadas (1996), Jarrow
(2001), Robert Jarrow and Turnbull (1997) and Madan and Unal (1998).



1 Models of Corporate Bond Pricing

In this section, we consider an affine class of corporate bond pricing models that can allow for both

stochastic volatility and jumps, and for a multi-factor term structure specification as well.

To fix the notation, let be the interest rate process ahtbe the firm’s asset value process. Denote
by Q the risk-neutral probability measure. The underlying structure of the models considered in our

analysis is as follows:

dinVy = [ri—38—0y(t)?/2— p(re, INV,)]dt + oy (t)dWY + d g — Edt, (1)
dv(t) = k(1—v(t))dt+oy\/Vv(t)dZ, (2)
e = Yu+ya+ya 3)

wherev(t) = o(t)?, the functiony—affine in bothr andIn X—is non-zero only whek,* is stochas-

tic, andZ denotes a standard Brownian motion un@erwhich can be correlated with the standard
Brownian motion\}¥ in the asset return process pyProcessl is a Lely jump process and parameter
¢ is such that the compensatéds a Q-Martingale. Note that the long-run mean of the activity rate is
normalized to unity in equation (2) for identification purpose. The state varighles 1,...,3, that

determine the interest rate are assumed to have an affine structure and will be specified later.

1.1 Zero-Coupon Bonds

Consider first the case where default can occur only at mafliribetV* be the default boundary.

Assumption 1 (i) Default occurs ifvr < V5; (i) In the event of default, the absolute priority rule is

followed and there is no bankruptcy cost.

Under this assumption, we are in the Merton world. The value of the zero-coupon bond can be
obtained from the equity value of the firm, which itself is equal to the price of an European call option

written on the firm’s asset value. Below we consider two special cases.
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1.2 The Compound Poisson Jump

The jump component is assumed to follow a compound Poisson process. Both the interest rate and
asset return volatility can be stochastic. The value of equity holders can be obtained using results from
Duffie, Pan, and Singleton (2000). As shown in DPS, this affine class of jump-diffusion with stochastic
volatility models include the models considered in Heston (1993), Bakshi, Cao, and Chen (1997), Bates

(2000), and Bakshi and Madan (2000) as special cases.

1.3 High-Frequency Jump

The jump componenitis assumed to follow a general Ligjump process. The interest rate is assumed
to be non-stochastic but asset return volatility can be stochastic. Results can be obtained from Carr and

Wu (2002).

In particular, we consider two different jump specifications: the variance gamma and log-stable

specifications (c.f. the appendix for more details on these jump models).

The solution to the Fourier transformation of the log asset return is given as follows (c.f. Carr and

Wu (2002) or Huang and Wu (2004)). We have

@ (u) = E? [€™] = exp—B(t)vo — A(t)), (4)
where where
_ p(1-e .
0w e ©)
K n- K* —nt *
Alt) = 02[2In<1—2n(1—e ”)>+(n—K)t}, (6)

with

n=n1/ (K*)2+20§tp, K* = K —iupaoy,.



An inverse Fourier transform can then be used to obtain the equity value. In practice, this inversion

can be done more efficiently using the FFT (see Carr and Madan (1999)).

1.3.1 The Longstaff-Schwartzed model with a multi-factor structure

Assume that under the risk-neutral measure

dinVy = (ri—3—02/2)dt+c,dW (7)
r = yitY2+ys (8)
dyr = (0i—Biyit) dt+oidZ, i=1...,3 (9)

wherez;,i = 1,...,3 are independent of each other aaV[dZ;,dW] = pyidt. If yx andys zero, we

recover the Longstaff-Schwartz model.

The default probability under the forward meas@in this multi-factor model can be calculated

similar to the one-factor term structure models. See appendix for more details.

1.4 Coupon Bonds

Consider am-period defaultable bond with unit face value. The bond pays fixed-rate coupons and
matures afr. Letc be the coupon rate. We consider two assumptions on the recovery rate of the bond
in the event of default. (Al) The bond recovery is equalte: 1 (times the face value) and to be
received on the first scheduled coupon date after default (discrete-time recovery in the sense of Duffie
(1998)). (A2) The bond recovery is equal tevdraction of an otherwise identical Treasury bond (the

Jarrow and Turnbull’s (1995) model of recovery of treasury).



Consider the recovery assumption made in (A1) first. R0, T) denote the time-0 value of the

bond with discrete-time recovery. We have

PHOT) = ¢/23 DOT)(A-Q(0.T) +DO.T)(L-Q0T)

w3 DO.T)[Q0T)~F 10T (10

whereQ' (0, T;) represents the time-0 unconditional default probability by tiinender theT,-forward
measureD(0, T;) denotes the time-0 value offamaturity default-free zero-coupon bond, aid=T.
On the RHS of (10), the first two terms represent the payoff conditional on no default, whereas the last

term comes from the bond recovery in the event of default.

Consider next the recovery assumption made in (A2).AFt0, T) denote the time-0 value of the

bond with a recovery of treasury. We have
PRT(0,T) = (3) S D(0.T)[1- wQ(0.T)] + (1+7)pOTL-wQOT)] (D
s 2 i; s i 4 > i 2 5 l )

wherew; is the loss rate. In this approach, each coupon is treated independently and the price of a
coupon bond is simply the sum of prices of the independent zeroes. This “portfolio of zeros” approach
is used in Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001). The advantage of

this approach is that it allows for correlation between the default process and the interest rate.

Pricing formulas given in Egs. (10) and (11) are fairly general as no assumption about the under-
lying state processes has yet been made. One can see from the two equations that once probabilities of
survival (or default) are known, the price of a defaultable bond is straightforward to calculate. To obtain
the default probabilities, however, we need to specify the dynamics of the underlying state variables.

Below we consider two specifications.



1.5 Asset Return with Constant Volatility

Let V be the firm asset value process alde a new procesd//V;*)i>o. Assume that under the

risk-neutral measure,

dinX, = [ri—58—02/2— p(ry,InX)]dt+ o, dW’ +d

Ne
_lei] _AEd, (12)
dre = K(0—r) dt+odW (13)

where the functiop—affine in bothr andlnX—is non-zero only whei;" is stochasticyw¥ andW'
are one-dimensional standard Brownian motions and have a correlation coeffigearbmeterg,,
0, ando; are the speed of mean-reverting, the long-term mean, and the volatility of the interest rate,

respectively.

Let's consider several special cases of the specification given in Egs. (12) and (13).

1.5.1 The Extended Merton Model

This model is first considered in Eom, Helwege, and Huang (2004). In this model, a coupon bond
is treated as if it were a portfolio of zero-coupon bonds, each of which can be priced using the zero-
coupon version of the model. The default bounddry= KVt € {Ti} and default is triggered if the

asset value is beloW on coupon dates. However, unlike the Merton model, the interest rate here can

be stochastic.

The price of a coupon bond can be written as follows

2T-1
POT) = 5 DOTIE? [(€/2) ;i +min(we/2 V) Iy,

+D(0,T)EC [(1+c/2) | vy =k +Min (w(1+c/2),vT)|{VT<K}} (14)

whereD(0, Ti) denotes the time-0 value of a default-free zero-coupon bond maturifiglat is the

indicator functionE@[-] is the expectation at time-0 under t@emeasure, and is the recovery rate.



It is known that

E%lvzky] = N(d2(K,1)) (15)

EQ [k Min(W, V)] = VoD(0,t) e ®N(—dy(W,1)) + W [N(c(,t)) — N(dZ(Kvt))} (16)
wherey € [0,K], N(-) represents the cumulative standard normal function and

In <xD\(/%,t)> +(=3+0a7/2)t
ot

dl(xat) = , dz(X,t) = dl(xvt) - Ov\ﬁ (17)

1.5.2 The CDG and LS Models
In the CDG model, there is no jumps in the X process and the funpti@given by the following
M (re, InX) = Ke [INX —v — @(r; — 0)] (18)

whereky, v, and@ are constants. Probabilities of default can be computed using a quasi-analytical

formula. See the appendix for details.

The LS model is a special case of CDG. The formulas in this model can be obtained by setting

to zero in CDG.

1.5.3 The Double-Exponential Jump-Diffusion Model

This model is analyzed by Huang and Huang (2002). In this model, the interest rate is assumed to
be constant and the functiqi is assumed to be zero. The asset return process does have a jump
component. Specifically\ is a Poisson process with a constant intenaity 0, the Z’s are i.i.d.

random variables, and = In(Z;) has a double-exponential distribution with a density given by

fy(y) = punue " 1iy>0) + Pana€¥ly g} (19)



In equation (19), parameterng,nNg > 0 and py, pg > 0 are all constants, witp, + py = 1. The mean

percentage jump siZeis given by

PunNu n PdNd

—Ele' —-1] =
¢ [e } Nu—1 na+1

~1 (20)

To calculate probabilities of default, consider the Laplace transfor@(0f-) as defined by

~

Qsto) = [ " e SQo,)dt (21)

An analytic solution for@(s;to) was obtained by Kou and Wang (2002, Theorem 4.1). Xet
In(Vo/V*) andpy = — (1§ +r — 83— 02/2), we have

Q\(S; to) = Nu—Y1s VYos e XYL | Yo2s—Nu Yis oYY 22)
Nu Yos—VYis Nu Yos—VYis

wherey; s andy, s are the only two positive roots for the following equation

1, PuNu . PdNd >
iry VTN L Md q) _s=0 23
Wy + 0% (nu_y Bl (23)

Given (S(s; to) Vs > 0, we then follow Kou and Wang (2002) to calculate numeric&I¥, -) using the

Gaver-Stehfest algorithm for Laplace inversion. For brevity, the details of this implementation method

are omitted here but can be found in Kou and Wang (2002).

1.5.4 The High-Frequency Jump Models

Like the previous subsection, the interest rate is assumed to be constant and the fynstassumed

to be zero. However, the low-frequency double-exponential jump component in the asset return process

will be replaced by a high-frequency jump component. The default boundary is assumed to be the same

as in the extended Merton model. Under this assumption, each defaultable zero coupon bond is like

a European option. As a result, we can borrow existing results from the option pricing literature, in

particular, from Duffie, Pan, and Singleton (2000) and Carr and Wu (2002).
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2 Conclusion

In this paper, we consider the structural approach to the valuation of defaultable bonds. In particular, we
examine an affine class of models which allow for analytical results for the price of defaultable bonds.
These models include as special cases some existing ones such as Longstaff and Schwartz (1995),
Collin-Dufresne and Goldstein (2001), and Huang and Huang (2002). The class of models examined
here also include new models that allow for stochastic asset return volatility, a high-frequency jump

component in the asset return process or a multi-factor term structure model.



Appendix A. Solution to the Jump-diffusion stochastic volatility models

For completeness, we provide a derivation of the equity value for the affine class of Jump-diffusion
stochastic volatility models under the framework of time-changed Ipgocesses. We borrow heavily

from Huang and Wu (2004) in the discussion that follows.

The log asset returg = In (V; /o) follows the following Levy process,

S=(r_dtt (mv_ ;o\z,t> (k). (A1)

Equation (A1) decomposes the log asset retyrimto three components. The first componént;-

o)t, is from the instantaneous drift, which is determined by no-arbitrage. The second component,
(oW — 202t), comes from the diffusion, witfa?t as the concavity adjustment. The last term,

(& —&t), represents the contribution from the jump component, Jitts the analogous concavity

adjustment fotk. The generalized Fourier transform fgrunder equation (A1) is given by
@ (u) = E? [€™] = exp(iu(r — &)t —tyq —tY;), ueDeC, (A2)

whereE? [-] denotes the expectation operator under the risk-neutral me@sedenotes a subset of

the complex domain() where the expectation is well-defined, and
Pg = 152 [iu+ u?]
2

is the characteristic exponent of the diffusion component.

The characteristic exponent of the jump compongnt,depends on the exact specification of the
jump structure. Throughout the paper, we use a subscript (or supersdtipt) denote the diffusion
component andj” the jump component. As a key feature agfly processes, neithgg nor; depends

on the time horizon.> We note thatps(u) is essentially the characteristic function of the log return

2See Bertoin (1996) and Sato (1999).
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whenu is real. The extension af to the admissible complex domain is hecessary for the application

of the fast Fourier transform algorithm.

Next, we apply the time change through the mapginrg T; as defined in equatior?®). The

generalized Fourier transform of the time-changed return process is given by

Qlu) — eHrIES [ei“("wnd5"2““)““<%J‘ET‘]>]

gu(r—atpM |:e*lIJTth| = eiu(er)thM (W), (A3)

wherey = [qu,qu]T denotes the vector of the characteristic exponents &fidy) represents the
Laplace transform of the stochastic tifheunder a new measudl. The measurd is absolutely
continuous with respect to the risk-neutral meafdm@nd is defined by a complex-valued exponential

martingale,
dM _ 1 . - -
= exp {lu <0V\er — 02Ttd> +iu (JTJ- - ETt’) + T+ l-pjTtJ] : (A4)
d@ t t 2 t

Note that equation (A3) converts the issue of obtaining a generalized Fourier transform into a
simpler problem of deriving the Laplace transform of the stochastic time (Carr and Wu (2002)). The
solution to this Laplace transform depends on the specification of the instantaneous actiwty)rate
and on the characteristic exponents, the functional form of which is determined by the specification of

the jump structuré;.

Depending on the frequency of jump arrival&My jump processes can be classified into three
categories: finite activity, infinite activity with finite variation, and infinite variation (Sato (1999)). Each

jump category exhibits distinct behavior and hence results in different option pricing performance.

Formally, the structure of aévy jump process is captured by it&\ty measureri(dx), which

controls the arrival rate of jumps of sizec R (the real line excluding zero). A finite activity jump

11



process generates a finite number of jumps within any finite interval. Thus, the integral afvhe L
measure is finite:

/Ro m(dx) < o. (A5)

Given the finiteness of this integral, thé&\ky measure has the interpretation and property of a proba-
bility density function after being normalized by this integral. A prototype example of a finite activity
jump process is the compound Poisson jump process of Merton (1976) (MJ), which has been widely
adopted by the finance literature. Under this process, the integral in equation (A5) defines the Poisson
intensity,A. The MJ model assumes that conditional on one jump occurring, the jump magnitude is

normally distributed with meaa and varianccerjz. The Levy measure of the MJ process is given by

(X_O‘)Z) dx (A6)

1
Ty (dX) = A ——=exp (-
\ /211012 2012

For all finite activity jump models, we can decompose tley measure into two components, a nor-

malizing coefficient often labeled as the Poisson intensity, and a probability density function controlling

the conditional distribution of the jump size.

Unlike a finite activity jump process, an infinite activity jump process generates an infinite number
of jumps within any finite interval. The integral of thely measure for such processes is no longer
finite. Examples of this class include the normal inverse Gaussian model of Barndorff-Nielsen (1998),
the generalized hyperbolic class of Eberlein, Keller, and Prause (1998), and the variance-gamma (VG)
model of Madan and Milne (1991) and Madan, Carr, and Chang (1998). In our empirical studies, we
choose the relatively parsimonious VG model as a representative of the infinite activity jump type. The
VG process is obtained by subordinating an arithmetic Brownian motion withcdfNtand variance
OJZ/)\ by an independent gamma process with unit mean rate and variandg¢Xxatehe Levy measure

for the VG process is given by

éeXp(—%\X\) .

Ty g(dx) = v, ™

X,

12



where

The parameters with plus subscripts apply to positive jumps and those with minus subscripts apply to
negative jumps. The jump structure is symmetric around zero when we drop the subscripts. Note that
as the jump size approaches zero, the arrival rate approaches infinity. Thus, an infinite activity model
incorporates infinitely many small jumps. Thé&wy measure of an infinite activity jump process is

singular at zero jump size.

When the integral inT?) is no longer finite, the sample path of the process exhiiisite varia-
tion. A typical example is am-stable motion withtor € (1,2].2 The Lévy measure under the-stable
motion is given by

m(dx) = cx|x| % tdx. (A7)

The process shows finite variation wherc 1; but whena > 1, the integral in 7?) is no longer finite
and the process is of infinite variation. Nevertheless, for teeyLmeasure to be well-defined, the
gquadratic variation has to be finite:

/Ro(l/\xz)n(dx) <o, (A8)
which requires thad < 2.

The three jump processes considered here (MJ, VG, and LS) all have analytical characteristic ex-
ponents, which we tabulate in Table 1. We also include the characteristic exponent for the diffusion
component for comparison. Given thé\y measuratfor a particular jump process, we can derive the

corresponding characteristic exponents using #nytKhintchine formula (Bertoin (1996)),
Pj(u) = —iub+ /Ro (1— €™ +iuxly<q) T(dX),

whereb denotes a drift adjustment term.

3See Samorodnitsky and Taqqu (1994) and Janicki and Weron (1994).
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In this subsection, we consider models where the asset return volatility is stochastic. More specif-
ically, we assume that the asset return process follows a time-chaeggdltocess and then apply a
stochastic time change to the Brownian component of the asset return to generate stochastic (diffusive)
volatility. Notice that the arrival rate of jumps remains constant. The stochastic time change we use is

the Heston (1993) model.

We need to derive the Laplace transform of the stochasticﬁmefé v(s)dsunder the measufd.

Thus, we rewrite the Laplace transform as

L) =EM |:e7wTTli| _gM {e’ Jo lIJTV(S)dS} ] (A9)

By Girsanov’'s Theorem, under measide the diffusion function of/(t) remains unchanged and

the drift function is adjusted to

M

H" =K(1—v(t)) +iuocoypv(t) (A10)

Substituting the Laplace transform in equati®f)(into the generalized Fourier transforms in Table

2, we can derive analytical results for 3 jump-diffusion with stochastic volatility models.

Appendix B. Default Probabilities in the CDG and LS Models

Default probabilitie€Q(0, -) can be calculated using an approach in the spirit of LS. Namely,

n

Q(O,U) = 'Zlq(ti;tO), ti =iU /n7 Ue (07T}7 (Bll)
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where fori=1,2,...,n,

N(a(tito)) — T|=1d(t_15to) N(b(tist;_1))

qlti;to) = NCCH) (B12)
M(tivT‘X()arO)
a(tj;t = - B13
(tisto) St%.ro) (B13)
b(tit;)) = _M (B14)
\/ StilX%)
and whereX =V /V*, the sum on the RHS of (B12) is defined to be zero wiherl, and
M(t,T[Xo,ro) = Eo[InX]; (B15)
St|Xo,r0) = Varg[InX]; (B16)
B Cowl[InX;, In X
M(t, T|Xy) = M(t,T|Xo,r0) —M(u,T|Xo,ro) SuXo.ro) u € (to,t) (B17)
Covo[In X, InX]2
t = t — fo,t B18
S(t|Xu) S(t[Xo, ro) SuXoro) V€ (to, t) (B18)
Notice that we follow CDG to discretize ajtf%,j =1,...,i—1, on the RHS of (B12). One can

see that the implementation of this approach to compu@(@ -) amounts to calculating the mean

M(t, T |Xo,ro) and the covarianc€ovg|In X, INXy],Vu <t <T.

It follows that

fEllnX] = InXo+ |:(T[V+\7Kg)+(1—|- Kg(p)g] er:(;l
q\ eke—Bit _
+(1+Ke9) (fo— g) < = < B ! (B19)

15



and

CovplIn X, In X, ety = (B20)
t u
02 Eo [/0 e dZ,/O e dZ\,] (=)
+0ov(1+@ky) Ep [/Ot gV dZ\,/Ouer" rvdv] (=1y)
+ou(1+ke) Eo [/OueKéVcle/Ot g rvdv] (=13)
+ (1+@k/)? Cowg [/Ot e“Vrydy, /Ou e rvdv] (=14)
where

0-2
I, = 2T<V,; (e#U—1)

Prv OvOr
Ke+B

l2 = (1+@k)

e _ 1 glke—Blu_ 1
2 K—B

Prv OvOr
Ke+B

1 — elke—B)t Keu _ ] (Ki—B)t _ g(k¢—B)u
ls = (14+@k) ° ¢ 1 elkerBu® €

_|_
Ke—PB 2Ky Ke— P

2 —B)t _ —Blu_ Gt i
o? [ (ekPr-1) (e(K; u_1) . <e(K{+B)u_ 1) ok 3)2_ e(; B
2B (k¢ —B) 75

B eZKAu -1 1 (Ke—B)u KU
P (12l g )

s = (1+@k)?
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Table 1: Characteristic Exponent of thé\sty Components in the Asset Return Process

Component Pa(u) or Yj(u)

Diffusion 102 |iu — (iu)?

Poisson Jump (MJ) Aliu (e‘”%"J2 — 1) T L 1)]
Variance Gamma (VG) A |—iuln (1— a—30?)+1In <1— iua -+ %Ofuzﬂ
Log Stable (LS) A (iu— (iu)®)

Table 2: Generalized Fourier Transforms of Log Asset Returns
¥ denotes the time changed component grknotes the unchanged component in the log reguen
In(M: /Vo). & denotes a compensated pure jump martingale componeng,itmcdoncavity adjustment.

Model X Vi @s(u)

svi oW — So%t J— &t U=t LM (yy)
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